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Abstract
Substantive research in the Social Sciences regularly investigates signed networks,

where edges between actors are either positive or negative. For instance, schoolchil-
dren can be friends or rivals, just as countries can cooperate or fight each other. This
research often builds on structural balance theory, one of the earliest and most promi-
nent network theories, making signed networks one of the most frequently studied
matters in social network analysis. While the theorization and description of signed
networks have thus made significant progress, the inferential study of tie formation
within them remains limited in the absence of appropriate statistical models. In this
paper we fill this gap by proposing the Signed Exponential Random Graph Model
(SERGM), extending the well-known Exponential Random Graph Model (ERGM)
to networks where ties are not binary but negative or positive if a tie exists. Since
most networks are dynamically evolving systems, we specify the model for both cross-
sectional and dynamic networks. Based on structural hypotheses derived from struc-
tural balance theory, we formulate interpretable signed network statistics, capturing
dynamics such as “the enemy of my enemy is my friend”. In our empirical application,
we use the SERGM to analyze cooperation and conflict between countries within the
international state system.
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Theory, International Relations, Inferential Network Analysis
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1 Introduction
In February 2022, Russia invaded Ukraine. This invasion shifted the relations that nu-
merous European countries had with the belligerents. The EU member states, including
previously Russia-aligned countries such as Hungary, sanctioned Russia and provide sup-
port to Ukraine. Belarus, a close ally of Russia, followed its partner into the conflict and
was accordingly also sanctioned by the EU member states. And Turkey, a political and
economic partner of both Ukraine and Russia, struggled to remain neutral in the conflict
and thus sought to mediate between the belligerents. A meaningful geopolitical adjust-
ment thus followed the Russian attack which demonstrates the importance of positive and
negative ties in the international network of states, showing how pairwise cooperation and
conflict between countries are interdependent.

Political scientists have studied this interplay of positive and negative ties between states
since the early 1960s (Harary, 1961). In this context, international relations are conceived as
signed networks, where the nodes are states and the edges are either positive, corresponding
to bilateral cooperation, negative, expressing bilateral conflict, or non-existent. Most of this
research builds on structural balance theory, which postulates that triads are balanced if
they include an odd number of positive relations and unbalanced if that number is either
even (“strong” structural balance; Heider, 1946; Cartwright and Harary, 1956) or exactly
two (“weak” structural balance; Davis, 1967). Accordingly, International Relations scholars
have studied whether specific triangular constellations correspond with these propositions
(Harary, 1961; Healy and Stein, 1973; McDonald and Rosecrance, 1985; Doreian and Mrvar,
2015) and what implications structural balance has for community formation and system
polarization (Hart, 1974; Lee et al., 1994). More recently, studies seek to test whether
structural balance affects interstate conflict and cooperation in an inferential framework
(Maoz et al., 2007; Lerner, 2016; Kinne and Maoz, 2022).

However, the study of signed networks is not restricted to International Relations.
There are also applications to friendship and bullying between children (Huitsing et al.,
2012, 2014), alliances and conflicts between tribal (Hage and Harary, 1984) or criminal
groups (Nakamura et al., 2020), statements of support and opposition between politicians
(Arinik et al., 2020; De Nooy and Kleinnijenhuis, 2013), and even to interactions within
ecological networks (Saiz et al., 2017). In the setting of online social media and multiplayer
games signed networks are also frequently studied (Leskovec et al., 2010; Bramson et al.,
2021). Signed networks are thus a substantively important subject of study across and
beyond the Social Sciences.

When working with signed networks, most techniques known from binary networks are
not directly appropriate. A significant amount of work thus focuses on adapting blockmod-
els (Doreian and Mrvar, 2009; Jiang, 2015) as well as network statistics, such as centrality
(Everett and Borgatti, 2014) and status (Bonacich and Lloyd, 2004), to signed networks.
From an inferential perspective, the study of signed networks so far has mainly relied on
logistic regression (Maoz et al., 2007; Lerner, 2016) or perceiving the observations as mul-
tivariate networks with multiple layers (Huitsing et al., 2012, 2014; Stadtfeld et al., 2020),
where one level relates to the positive and another to the negative edges. While the former
approach disregards endogenous dependence, the latter only allows for dependence between
the separate observed layers of the network. Moreover, the multilayer approach does not
adequately capture that most interactions in signed networks are either positive, negative,
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or non-existent. In other words, countries having negative and positive relations at the
same time is unrealistic.

In the context of binary networks, Frank and Strauss (1986) proposed Exponential
Random Graph Models (ERGMs) as a generative model for a network encompassing n
actors represented by the adjacency matrix y = (yi j)i, j=1,...,n, where yi j = 1 translates to
an edge between actors i and j and yi j = 0 indicates that there is no edge. Henceforth,
we use lowercase letters for variables when referring to the realized value of a random
variable, i.e., the observed network y, and capitalize the name to indicate that they are
stochastic random variables, for instance, Y . Within this framework, Wasserman and
Pattison (1996) formulate a probability distribution over all possible y ∈ Y by a canonical
exponential family model:

Pθ (Y = y) =
exp

{
θ>s(y)

}

κ(θ ) ∀ y ∈ Y, (1)

where Y is the set of all observable binary adjacency matrices among n fixed actors, s : Y →
Rq is a function of sufficient statistics weighted by the coefficients θ ∈ Θ ⊆ Rp, and
κ(θ ) := ∑

ỹ∈Y exp{θ>s(ỹ)} is a normalizing constant. Possible choices for the sufficient
statistics s(y) of directed networks include the number of edges and triangles in the network
(see Lusher et al., 2012 for a detailed overview of the model and other possible statistics).
Depending on the specific sufficient statistics, ERGMs relax the often unrealistic conditional
independence assumption inherent to most standard regression tools in dyadic contexts and
allow general dependencies between the observed relations. Note that in many applications,
auxiliary information x exogenous to the network is available, which can also be used in
the sufficient statistics. For brevity of the notation, we, however, omit the dependence
of s on x. Due to this ability to flexibly specify dependence among relations, account
for exogenous information, the desirable properties of exponential families, and versatile
implementation in the ergm R package (Handcock et al., 2008; Hunter et al., 2008), the
ERGM is a core inferential approach in the statistical analysis of networks.

In this article, we extend (1) to cover signed networks under general dependency as-
sumptions and coin the term Signed Exponential Random Graph Model (SERGM) for the
resulting model. The SERGM provides an inferential framework to test the predictions
of, e.g., structural balance theory (Heider, 1946; Cartwright and Harary, 1956) without
assuming that all observed relations are independent of one another. This characteristic is
of vital importance given that balance theory explicitly posits that the sign of one relation
depends on the state of other relations in the network. As the introductory examples sug-
gest, interdependence-driven sign changes occur rapidly between states, necessitating the
use of endogenous network statistics to adequately capture them. Along these lines, Lerner
(2016, p. 75) notes that “tests of structural balance theory” should not rely on “models
that assume independence of dyadic observations” and thereby flags the importance of de-
veloping an ERGM for signed networks. We answer this call by introducing, applying, and,
via the R package ergm.sign, providing statistical software in R (R Core Team, 2021) to
implement the SERGM for static and dynamic networks, which is currently available at:

https://github.com/corneliusfritz/ergm.sign
We proceed as follows: In the consecutive section, we formally introduce the SERGM

and a novel suite of sufficient statistics to capture network topologies specific to signed
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networks. In Section 3, we detail how to estimate the parameters of the SERGM and
quantify the uncertainty of the estimates. Next, we apply the introduced model class to
the interstate network of cooperation and conflict in Section 4. Finally, we conclude with
a discussion of possible future extensions.

2 The Signed Exponential Random Graph Model
2.1 Model Formulation
First, we establish some notation to characterize signed networks. Assume that the signed
adjacency matrix y = (yi j)i, j=1,...,n was observed between n actors. Contrasting the binary
networks considered in (1), the entries of this signed adjacency matrix yi j are either “+”,
“−”, or “0”, indicating a positive, negative, or no edge between actors i and j. To ease
notation, we limit ourselves to undirected networks without any self-loops, i.e., ∀ i, j =
1, ..., n yi j = y ji and yii = “0” holds. Nevertheless, the proposed model naturally extends
to directed settings. We denote the space encompassing all observable signed networks
between n actors by Y± and specify a distribution over this space analogous to (1) in the
following log-linear form:

Pθ (Y = y) =
exp

{
θ>s(y)

}

κ(θ ) ∀ y ∈ Y±. (2)

The function of sufficient statistics in (2) takes a signed network as its argument and
determines the type of dependence between dyads in the network. A theoretically motivated
suite of statistics one can incorporate as sufficient statistics follows in Section 2.2 but
mirroring the term counting edges in binary networks, we can use the count of positive ties
in signed network y via

EDGE+(y) =
∑

i< j
I(yi j = “+”),

where I(·) is the indicator function. Along the same lines, one can define a statistic for the
number of negative edges EDGE−(y) and use both statistics as intercepts in the model.

We can extend (2) to dynamic networks, which we denote by Y1, ...,YT for observations
at t = 1, ...,T , by assuming a first-order Markov dependence structure to obtain

Pθ (Yt = yt |Yt−1 = yt−1) =
exp

{
θ>s(yt ,yt−1)

}

κ(θ ,yt−1)
∀ yt ∈ Y±. (3)

The sufficient statistics encompassed in s(yt ,yt−1) capture within-network or endogenous
dependencies through statistics that only depend on yt and between-network dependencies
when incorporating yt−1. One instance for network statistics for between-network depen-
dency is the stability statistic for positive edges

STABILITY +(yt ,yt−1) =
∑

i< j
I(yi j,t = “+”)I(yi j,t−1 = “+”),
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which can equivalently be defined for negative ties. Thus, we assume that the observed
network is the outcome of a Markov chain with state space Y± and transition probability
(3). Of course, we may also include exogenous terms in (3), i.e., any pairwise- or actor-
specific information external to yt.

For the interpretation of the estimates, techniques from binary ERGMs can be adapted.
To derive a local tie-level interpretation, let θq with q ∈ {1, ..., p} denote the qth entry of θ
corresponding to the qth sufficient statistic, sq(yt ,yt−1). We further define yt = (yi j,t)i, j=1,...,n
for t = 1, ...,T and by y+

i j,t denote the network yt with the entry yi j,t fixed at “+”, y−i j,t and
y0

i j,t are established accordingly. Let y(−i j),t refer to the network yt excluding the entry yi j,t .
Due to the added complexity of signed networks, the distribution of Yi j,t conditional on
Y(−i j),t is a multinomial distribution where the event probability of entry “+” is:

Pθ (Yi j,t = “+”|Y(−i j),t = y(−i j),t−1,Yt−1 = yt−1) =
exp

{
θ>s(y+

i j,t ,yt−1)
}

∑
k∈{+,−,0} exp

{
θ>s(yk

i j,t ,yt−1)
} . (4)

In the same manner, we can state the conditional probability of “−” and “0”. In accordance
with change statistics from binary ERGMs, we subsequently define positive and negative
change statistics through

∆ 0→+
i j,t (y(−i j),t ,yt−1) = s(y+

i j,t ,yt−1)− s(y0
i j,t ,yt−1)

∆ 0→−
i j,t (y(−i j),t ,yt−1) = s(y−i j,t ,yt−1)− s(y0

i j,t ,yt−1).
(5)

While the positive change statistic ∆ 0→+
i j,t (yt ,yt−1) is the change in the sufficient statistics

resulting from flipping the edge value of yi j,t from “0” to “+”, the negative change statistic
∆ 0→−

i j,t (yt ,yt−1) relates to the change from “0” to “−”. By combining (4) and (5), we can
obtain the relative log odds of Yi j,t to be “+” and “−” rather than “0”:

log
(
Pθ (Yi j,t = “+”|Y(−i j),t = y(−i j),t ,Yt−1 = yt−1)
Pθ (Yi j,t = “0”|Y(−i j),t = y(−i j),t ,Yt−1 = yt−1)

)
= θ>∆ 0→+

i j,t (y(−i j),t ,yt−1)

log
(
Pθ (Yi j,t = “−”|Y(−i j),t = y(−i j),t ,Yt−1 = yt−1)
Pθ (Yi j,t = “0”|Y(−i j),t = y(−i j),t ,Yt−1 = yt−1)

)
= θ>∆ 0→−

i j,t (y(−i j),t ,yt−1).
(6)

This allows us to relate θ to the conditional distribution of Yi j,t given the rest of the network
and derive two possible interpretations of the coefficients reminiscent of multinomial and
logistic regression: the conditional log-odds of Yik,t to be “+” rather than “0” are changed
by the additive factor θp, if the value of yi j,t changing from “0” to “+” raises the pth entry
of ∆ 0→+

i j,t (y(−i j),t ,yt−1) by one unit, while the other statistics remain unchanged. A similar
interpretation holds for the negative change statistic.

Second, one can employ a global interpretation to understand the parameters on a
network level. Then, θq > 0 indicates that higher values of sq(yt ,yt−1) are expected under
(2) than under a multinomial graph model, which we define as a simplistic network model
where the value of each dyad is “+”, “−” and “0” with equal probability. In the opposing
regime with θq < 0, we expect lower values than under this multinomial graph model.
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2.2 From Structural Balance Theory to Sufficient Statistics
As discussed in the introduction, structural balance theory is a natural approach to signed
networks. But so far, inferential work on it remains limited and uses, as we show below,
suboptimal measures of its structural expectations. We thus shortly introduce the core
logic of structural balance theory, discuss previous measures of it, and then derive suffi-
cient statistics from it for inclusion in the SERGM. These statistics enable us to test the
structural expectations formulated by structural balance theory in a principled manner
within the framework introduced in Section 2.1.

Theory The main implication of structural balance theory relates to the existence of
triads between actors. Triads are the relations between three actors (Wasserman and
Faust, 1994) and generally called balanced if they consist solely of positive ties (“the friend
of my friend is my friend”) or one positive and two negative ties (“the enemy of my enemy is
my friend”). According to structural balance theory, this type of triad should be observed
more often than expected by chance in empirical signed networks. In contrast, triads that
include a single negative tie are structurally imbalanced as the node participating in both
positive relations has to cope with the friction of its two “friends” being opposed to each
other. This actor should thus try to turn the negative tie into a positive tie to achieve a
balanced constellation where all three actors share positive connections. But if this proves
impossible, the actor will eventually have to choose a side, making one of its previously
positive ties negative and resulting in structural balance. In triads where relations between
all three actors are negative, the actors at least have incentives to make similar changes;
these triads are thus also considered structurally imbalanced (Heider, 1946; Cartwright
and Harary, 1956). In particular, two actors could reap benefits by developing a positive
relationship, pooling their resources, and ganging up on the third node. However, later
work views these triads without any positive ties as weakly balanced (Heider, 1958; Davis,
1967), as Davis (1967) notes that enemies of enemies being enemies indicates structural
imbalance only if there are two subsets of nodes in the network. Triadic constellations with
one negative relation are thus structurally imbalanced, should be empirically rare, and,
where they exist, tend to turn into balanced states. Where only one negative tie exists,
there is strong pressure to either eliminate it or create an additional one. And where there
are three negative ties, actors at least have a clear incentive to turn one of them into a
positive relation opportunistically, though their (im-)balance depends on the nature of the
wider system (see also Easley and Kleinberg, 2010, ch. 5).

Testing Structural Balance via Lagged Statistics In interstate relations, this theory
implies that two countries that are on friendly terms with the same other state should not
wage war against each other. If three states all engage in conflict with each other, two
of them may also find it beneficial to bury their hatchet, focus on their common enemy,
and pool their resources against it. Along these lines, existing research asks whether two
countries’ probability to cooperate or to fight is affected by them sharing common friends
or foes (Maoz et al., 2007; Lerner, 2016). In particular, these authors investigate whether
having shared allies or enemies at time t − 1 affects the presence of positive and negative
ties at t. The resulting “friend of my friend is my friend” statistic we can incorporate in
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Figure 1: Combining past and present ties can misrepresent structural (im-)balance: Triads
observed at t−1 and t are balanced (left side), combined triads are imbalanced (right side).
Dashed lines indicate tie at t − 1, solid ones at t. Dotted arrows show which ties from t − 1
and t contribute to the exogenous specification.

the sufficient statistics of (3) is:

CF+(yt ,yt−1) =
∑

i< j
I(yi j,t = “+”)


 ∑

h6=i,h6= j

I(yih,t−1 = “+”)I(y jh,t−1 = “+”)

 . (7)

Similar delayed statistics can be defined for all other implications of the theory by treating
the existence of common friends and foes as exogenous covariates. However, this approach
comes with both theoretical and methodological problems. It is unclear whether actors
wait a period (a calendar year in the case of Maoz et al., 2007 and Lerner, 2016) to adjust
their relations towards structural balance and why they should do so as other applica-
tions of structural balance theory view these changes as instantaneous (see e.g. Kinne and
Maoz, 2022). If the countries do not wait for a period, this approach can misrepresent the
dynamics of signed networks as contradicting structural balance theory when they do not.

To illustrate this point, the right side of Figure 1 visualizes three structurally imbal-
anced constellations which Maoz et al. (2007) and Lerner (2016) uncover in the network of
cooperation and conflict between states: (a) The friend of a friend being an enemy, (b) the
enemy of an enemy being an enemy, and (c) the friend of an enemy being a friend. The left
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Figure 2: Sufficient statistics for signed networks.

side of Figure 1 presents the triads at t − 1 and t these constellations are potentially made
up of as ties are not observed simultaneously. The links of i and j to h were observed at
t−1 but those between i and j at t. The structurally imbalanced triads on the right side of
Figure 1 thus consist of observations of the same triad made at two different points in time.
Crucially, the left side of Figure 1 shows that both of these observations can themselves be
structurally balanced. Exogenous measures of common friends and enemies can thus only
capture the predictions of structural balance theory if (i) actors i and j wait a period until
they change their tie sign due to their links to h and (ii) their links to h remain unchanged.
Both of these conditions require strong assumptions regarding how actors behave within a
network. In particular, structural balance theory implies that the edges between i, j, and
h are interdependent. But its exogenous operationalization assumes two of these edges as
fixed while waiting to observe the third. An example shows that this is not just a theo-
retical issue, but mischaracterizes empirically observed relations between states: The US
and Iran had common foes in 1978 but, in 1979, had become outright enemies themselves.
The exogenous operationalization of structural balance regards this situation as unbalanced
although it is an example of the scenario of Figure 1b.

Testing Structural Balance via Endogenous Statistics Therefore, endogenous net-
work terms are necessary to capture the endogenous network dynamics postulated by
structural balance theory. We next define endogenous statistics that mirror each con-
stellation described by structural balance theory to test its predictions empirically. Build-
ing on the k-Edgewise-Shared Partner statistic developed to measure transitive closure in
binary ERGMs (Hunter, 2007), we can define k-Edgewise-Shared Friends, ESFk(y), and
k−Edgewise-Shared Enemies, ESEk(yt), for signed networks. ESFk(yt) counts the edges

8



with k shared friends and ESEk(yt) those with k shared enemies. We further differentiate
between the state of the edge at the center of each triangular configuration and, e.g., write
ESF+

k (yt) and ESF−k (yt) as the version of the statistic where the value of yi j is “+” and
“−”, respectively. Figure 2 illustrates the resulting four statistics.

For k = 2 these statistics reduce to specific types of common triangle configurations
(Holland and Leinhardt, 1972). However, as shown in Snijders et al. (2006), these types
of statistics frequently lead to degenerate distributions where most of the probability mass
is put on the empty or full graph (Handcock, 2003; Schweinberger, 2011). Moreover, the
implied avalanche effect is particularly pronounced if the corresponding parameters are
positive, as structural balance theory suggests. For binary ERGMs, it is thus standard to
employ a statistic of the weighted sum of statistics in which the weights are proportional
to the geometric sequence (Snijders et al., 2006; Hunter and Handcock, 2006). We follow
this practice and define the geometrically weighted statistic for negative edgewise-shared
enemies, as portrayed in Figure 2a, with a fixed decay parameter α as

GWESE+(yt ,α) = exp{α}
n−2∑

k=1
(1− (1− exp{−α}))k ESE+

k (yt). (8)

We establish the geometrically weighted variants of ESE−k (yt),ESF+
k (yt), and ESF−k (yt)

accordingly. Each of these statistics reflects a specific type of triadic closure in signed
networks as visualized in Figure 2. To interpret the coefficient θGWESE+ one can consider
the logarithmic relative change in the probability according to (3) when increasing the
number of common enemies of a befriended edge by one and keeping all other statistics
constant. If the befriended actors already had k prior common enemies before this change,
this relative change is given by

θGWESE+ (1− (1− exp{−α}))k .

Thus, if θGWESE+ > 0, each additional common enemy raises the probability to observe the
signed network, although the increments become smaller for higher values of k. Hunter
(2007) shows that these geometrical weighted statistics are equivalent to the alternating
k-triangle statistics proposed by Snijders et al. (2006).

These triadic structures fully capture the logic of structural balance as they allow us to
study the prevalence of triads where positive ties account for zero (Figure 2a) , one (Figure
2b), two (Figure 2c), and all three (Figure 2d) of the edges. According to this logic,
we would expect the statistics GWESE+(yt) and GWESF+(yt) to be higher in empirical
networks than expected by chance, but not GWESE−(yt) and, particularly, GWSF−(yt).
If, on the other hand, the coefficients corresponding to GWESE−(yt) or GWESF−(yt) turn
out to be positive in a network, this would offer empirical support for modifications of
structural balance theory that also see the constellation in Figure 2a as balanced (Heider,
1958; Davis, 1967) or combine it with insights about, e.g., opportunism or reputation (Maoz
et al., 2007). Mirroring the development of edge-wise shared enemy and friend statistics,
it is also possible to compute dyad-wise statistics that do not require i and j to share a tie.

Other Sufficient Statistics Besides these substantively informed statistics developed
from structural balance theory, there are - as in the binary case - numerous other statistics
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one may incorporate into the model. Some of these are even necessary to isolate the effects
of structural balance. In binary networks, closed triads where each node is connected to the
others are more likely to form if the involved actors are highly active due to processes such
as popularity. In the context of ERGMs, this phenomenon is captured by degree statistics
counting the number of actors in the network with a specific number of edges. For signed
networks, similar but more complicated processes may be at work and, to capture them,
we define DEG+

k (yt) and DEG−k (yt) as statistics that, respectively, count the number of
actors in the signed network yt with degree k ∈ {1, ..., n−1} for “+”- and “−”-signed links,
respectively. Since the degree statistics are also prone to the degeneracy issues detailed
above, we define geometrically-weighted equivalents for the positive and negative degrees.
One can also incorporate exogenous statistics for the propensity to observe either a positive
tie, similar to (7), via the following statistic:

EXO+(yt) =
∑

i< j
I(yi j,t = “+”)xi j,t ,

where xi j,t can be any pairwise scalar information. Similar statistics can be defined for
negative, EXO−(yt), and any , EXO±(yt), tie. To test whether there is a tendency for homo-
or heterophily based on actor attribute x = (x1, ..., xn) in the network, one may transform
the nodal information to the pairwise level by setting xi j,t = |xi,t − x j,t | or xi j,t = I(xi,t = x j,t)
for continuous and categorical attributes, respectively.

3 Estimation and Inference
To estimate θ for a fully specified set of sufficient statistics, we maximize the likelihood of
(3) conditional on the initial network y0:

L(θ ; y1, ...,yT ) =
T∏

t=1

exp
{

θ>s(yt ,yt−1)
}

κ(θ ,yt−1)
=

exp
{

θ>
(∑T

t=1 s(yt ,yt−1)
)}

∏T
t=1 κ(θ ,yt−1)

. (9)

We can observe that this joint probability of the observed networks is still an exponential
family, where the sufficient statistic is the sum of the individual statistics, the normalizing
constant is composed of the product of the normalizing constants at each time point, and the
canonical parameter is unchanged. Evaluating the normalizing constant in (9), on the other
hand, necessitates the calculation of T ·

(
3

n(n−1)
2

)
summands, making the direct evaluation of

the likelihood prohibitive even for small networks. Fortunately, these difficulties are known
from the analysis of binary networks and have been tackled in numerous articles (see, e.g.,
Strauss and Ikeda, 1990; Hummel et al., 2012; Snijders, 2002; Hunter and Handcock, 2006),
which guide our estimation approach for the SERGM.

To circumvent the direct evaluation of (9), we can write the logarithmic likelihood ratio
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of θ and a fixed θ0 without a normalizing constant but an expected value

r(θ , θ0; y) =(θ − θ0)>
( T∑

t=1
s(yt ,yt−1)

)

− log
(
Eθ0

(
exp

{
(θ − θ0)>

( T∑

t=1
s(Yt ,yt−1)

)}))
.

(10)

We approximate the expectation in (10) by sampling networks over time, denoted by
Y (m) = (Y (m)

1 , ...,Y
(m)

T ) for the mth sample, whose dynamics are governed by (3) under θ0.
Due to the Markov assumption, it suffices to specify only how to sample Y

(m)
t conditional

on yt−1 for t = 1, ...,T via Gibbs sampling. In particular, we generate a Markov chain
with state space Y± that, after a sufficient burn-in period, converges to samples from Yt

conditional on yt−1. Since we toggle one dyad in each iteration, the conditional probability
distribution we sample from is the multinomial distributions stated in (4). In a setting
where we sample Yi j,t conditional on y(−i j),t and yt−1 with its present value given by ỹi j,t , we
can restate this conditional probability for “+” in terms of change statistics:

Pθ (Yi j,t = “+”|Y(−i j),t = y(−i j),t ,Yt−1 = yt−1) =
exp

{
θ>∆ ỹi j,t→+

i j (y(−i j),t ,yt−1)
}

∑
k∈{+,−,0} exp

{
θ>∆ ỹi j,t→k

i j (y(−i j),t ,yt−1)
} .

This reformulation speeds up computation, since for most statistics the calculation of global
statistics is computationally more demanding than the calculation of the change statistics
defined in (5). Given M sampled networks, we get

r(θ , θ0; y) ≈(θ − θ0)>
( T∑

t=1
s(yt ,yt−1)

)

− log
(

1
M

M∑

m=1
exp

{
(θ − θ0)>

( T∑

t=1
s(y(m)

t ,yt−1)
)})

,

(11)

as an approximation of (10). However, according to standard theory of exponential families,
the parameter θ maximizing (11) only exists if the sum of all observed sufficient statistics∑T

t=1 s(yt ,yt−1) under θ0 is inside the convex hull spanned by the sum of the sampled
sufficient statistics (see Theorem 9.13 in Barndorff-Nielsen, 1978). Since this condition
does not hold for arbitrary values of θ0, we modify the partial stepping algorithm under a
log-normal assumption on the sufficient statistics introduced by Hummel et al. (2012) to
dynamic signed networks for finding an adequate value for θ0 (details can be found in the
Supplementary Material). We seed our algorithm with θ0 maximizing the pseudo-likelihood
given by (4). To obtain estimates in the cross-sectional setting of (2), we can use the same
procedure by setting T = 1.

To quantify the sampling error of the estimates, we rely on the theory of exponential
families stating that the Fisher information I(θ ) equals the variance of ∑T

t=1 s(Yt ,yt−1)
under the maximum likelihood estimate θ̂ . We can estimate the Fisher information by
again sampling networks Y (1), ...,Y (M) and calculating the empirical variance of∑T

t=1 s(y(m)
t ,yt−1) for m = 1, ...,M. Due to the employed MCMC approximation, we follow

standard practice of the ergm and coda packages (Handcock et al., 2008; Plummer et al.,
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2006) and estimate the MCMC standard error by the spectral density at frequency zero of
the Markov chains of the statistics. For the final variance estimate, we sum up both types
of errors. By extending the bridge sampler introduced in Hunter and Handcock (2006) to
the SERGM for dynamic networks, we can also evaluate the AIC value of the model to
carry out a model selection (see Supplementary Material).

4 Testing Structural Balance in International Coop-
eration and Conflict

4.1 Motivation
We now employ the SERGM to investigate relations of cooperation and conflict in the
interstate network over the years 2000-2010. This application speaks directly to Maoz et al.
(2007), Lerner (2016), and the many other studies on structural balance in international
relations cited above. We focus on this period since it is the most current period for
which we have comprehensive and reliable data and because 9/11 provided a structural
break in international relations. We do not let θ vary over time here, but it would be
reasonable to assume that 9/11 altered the dynamics of the interstate network (see Thurner
et al., 2019). Hence θ likely changed from before to after 9/11 and we analyze only
the 2000s. One example of this phenomenon is how states cooperate on their defense
and security policies after 9/11. While alliances remain important, there is nowadays
relatively little change in the alliance network from one year to another as “only a dozen
new alliances have emerged since 9/11” (Kinne, 2020, p.730). Instead, a new type of formal
commitment between states, defence cooperation agreements (DCA), have become widely
used throughout the 1990s and 2000s (see Kinne, 2018, 2020). To ensure that we capture
interstate cooperation in a meaningful manner for the period we are interested in, we depart
from previous studies of structural balance in international relations and use DCAs instead
of alliances to operationalize interstate cooperation. We do so for for several reasons.

First, as noted, the contemporary alliance network is basically static, experiencing little
to no shifts over time. This is a challenge for estimation but, substantively, also severely
limits the extent to which alliance relations could be affected by conflict between states. In
contrast, DCAs are both initiated and terminated regularly (Kinne, 2018). Second, con-
temporary alliances are often multilateral and strongly institutionalized, meaning that if
e.g. a new member joined NATO, it would result in the creation of several new alliance ties
at once, but also that terminating these alliances, which have own secretariats, headquar-
ters, and command structures, is challenging and thus empirically rare. Alliances hence
do not clearly correspond to dyadic ties and have a life of their own which restricts tie
deletion. In contrast, DCAs are bilateral and not as institutionalized, making them corre-
spond much better to positive dyadic ties which can be formed but also removed (Kinne,
2018). Third, as opposed to alliances, DCAs are also signed by countries which have a
policy of neutrality, thus reducing the risk that some ties are structural zeros, i.e. ineligible
to be formed (Kinne, 2020). And fourth, most alliances only become active during armed
conflict, stipulating wartime cooperation between their members (Leeds et al., 2002), but
their goal is to deter enemies from instigating conflict in the first place. In other words,
states’ formal commitment to cooperate, as demonstrated in an alliance, becomes realized
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only in a fraction of cases which are those where the alliance’s main goal, deterrence, has
failed. In contrast, DCAs specify states’ commitment to and framework for peacetime,
day-to-day defence cooperation regarding activities such as joint defence policies, military
exercises, the co-development of military technology, and bilateral arms transfers (Kinne,
2018, 2020). DCAs therefore present a better dynamic measure of regular, bilateral defence
cooperation between states for the 2000s than alliances do.

4.2 Model Specification
To measure cooperative, positively-signed interstate relations, we thus use the DCA data
collected by Kinne (2020) and consider a tie as existent and positive if a pair of states
shares at least one active DCA in year t. For conflictious, negatively-signed relations, we
follow Maoz et al. (2007) and Lerner (2016) by using the Militarized Interstate Dispute
(MID) Data provided by Palmer et al. (2021). MIDs are defined as “united historical cases
of conflict in which the threat, display or use of military force short of war by one member
state is explicitly directed towards the government, official representatives, official forces,
property, or territory of another state” (Jones et al., 1996, p.163). We consider a tie to be
existent and negative in year t if a pair of states has at least one MID between them. We
plot the resulting interstate network, consisting of positive DCA- and negative MID-ties,
in the Supplementary Material.

To specificy a SERGM for modeling this evolving network, we first follow Maoz et al.
(2007) and Lerner (2016) by including several exogenous covariates, namely i’s and j’s
political difference, military capability ratio, the difference in wealth, and geographical
distance. These variables’ sources are discussed in the Supplementary Material. Stemming
from (3), we condition on the first year for the estimation and hence effectively model the
network between 2001 and 2010.

Regarding endogenous statistics, the SERGM includes, most importantly, the four tri-
adic terms developed above to capture the network’s tendency towards or against struc-
tural balance. Theoretically, we would expect the coefficients concerning GWESE+(yt)
and GWESF+(yt) but not GWESF−(yt) to have positive and statistically significant coeffi-
cients. For GWESE−(yt), the expectation depends on whether we believe the state system
to consist of two or of more groups (Davis, 1967). The latter appears more likely for the
2000s and we may thus expect to observe a positive coefficient. Furthermore, we include
the positive and negative degree statistics, to capture highly active nodes’ propensity to
(not) form more ties, and statistics that count the number of positive and negative edges
as well as how many isolate nodes exist in each part of the network. Finally, stability terms
are included to capture positive and negative ties remaining from the previous period. We
term this specification Model 1 and present the results on the left side of Table 1.

We further compare Model 1 to a model specification where we replace the endogenous
terms of structural balance, as depicted in Figure 2, with the exogenous versions used
by Maoz et al. (2007) and Lerner (2016), stated in (7), where i’s and j’s ties with h are
observed not contemporaneously but in t − 1. We denote the corresponding statistics by
CF+(yt ,yt−1) and CF−(yt ,yt−1) to quantify the effect of common friends on positive and
negative ties, while the number of common enemies are CE+(yt ,yt−1) and CE−(yt ,yt−1).
Each of these exogenous measures corresponds to one of our triadic endogenous statistics,
e.g. CF+(yt ,yt−1) to GWESF+(yt) and CE−(yt ,yt−1) to GWESE−(yt). Otherwise, the
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Table 1: Estimated coefficients and confidence intervals of the two model specifications
detailed above. Dashes indicate the exclusion of covariates in a model specification. ∆AIC
indicates the difference between the AIC values of Model 1 and 2.

Model 1 Model 2
Coef. CI Coef. CI

Edges + -1.161 [-1.59,-0.732] -0.689 [-1.203,-0.175]
Edges − -1.754 [-2.142,-1.366] -1.469 [-1.912,-1.026]
Isolates + 0.667 [-0.203,1.537] 0.462 [-0.422,1.346]
Isolates − -1.188 [-2.319,-0.057] -0.474 [-1.617,0.669]
Stability + 7.447 [7.331,7.563] 7.502 [7.379,7.625]
Stability − 5.531 [5.262,5.8] 5.594 [5.306,5.882]
Abs. Polity Diff. + -0.022 [-0.032,-0.012] -0.017 [-0.027,-0.007]
Abs. Polity Diff. − 0.004 [-0.016,0.024] 0.012 [-0.01,0.034]
CINC Ratio + 0.186 [0.117,0.255] 0.202 [0.129,0.275]
CINC Ratio − -0.168 [-0.293,-0.043] -0.14 [-0.279,-0.001]
Abs. GDP Diff. + -0.521 [-0.57,-0.472] -0.495 [-0.554,-0.436]
Abs. GDP Diff. − -1.04 [-2.651,0.571] -1.311 [-3.069,0.447]
Abs. Distance ± 3.324 [0.515,6.133] 2.796 [-0.428,6.02]
GWESE+ (Fig. 2a) 0.618 [0.308,0.928] -
GWESE− (Fig. 2b) 0.515 [0.199,0.831] -
GWESF+ (Fig. 2c) 0.489 [0.415,0.563] -
GWESF− (Fig. 2d) 0.319 [0.178,0.46] -
GWD+ -2.214 [-2.577,-1.851] -2.625 [-3.015,-2.235]
GWD− -0.321 [-1.617,0.975] -0.998 [-2.276,0.28]
CF+ - 0.069 [0.051,0.087]
CF− - 0.077 [0.04,0.114]
CE+ - 0.374 [-0.042,0.79]
CE− - 0.304 [-0.239,0.847]
∆AIC 0 599.894

two models are identical as Model 2 includes the other endogenous statistics specified in
Model 1. We can thus adjudicate whether operationalizing structural balance dynamics
in an endogenous manner, implying that they occur instantaneously, is preferable over the
exogenous specification where these dynamics occur with a one-period time delay.
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4.3 Results
Below, we interpret the results of the endogenous network terms and their exogenous equiva-
lents. We discuss the coefficient estimates of the exogenous covariates in the Supplementary
Material. As expected, both the GWESF+(yt) and the GWESE+(yt) terms exhibit positive
and statistically significant coefficients, with neither confidence interval encompassing zero.
These results align with structural balance theory in that both “the friend of my friend”
and “the enemy of my enemy” are my friend. But we also find that the GWESF−(yt) and
GWESE−(yt) coefficients are positive and statistically significant, albeit with smaller effects
and confidence intervals closer to zero than in the case of the first two statistics. In the
studied interstate network, there is thus also a tendency towards enemies of enemies being
enemies. This echoes the point that triangles with three negative ties are imbalanced only
in systems with two subsets (Davis, 1967), a condition that may have been present in the
highly bipolar first half of the Cold War, but not more than a decade after its termination.
This result is thus consistent with the verdict that, against early formulations of structural
balance theory (Heider, 1946; Cartwright and Harary, 1956), “if two negative relations are
given, balance can be obtained either when the third relationship is positive or when it
is negative” (Heider, 1958, p.206). Observing that the effect of GWESE−(yt) is positive
and statistically significant underlines the importance of overall network structure for the
predictions of structural balance theory.

We also find that friends of friends have an increased probability of being enemies. In
the international relations of the 2000s, what seems to hold is that both enemies of enemies
and friends of friends are more likely to interact than if they did not share relations with a
common third state. Friends of friends being more likely to fight than to have no relation
at all suggests that shared relations may also indicate the “reachability” of one state to
another within a system where some dyads, e.g., that between Lesotho and Belize, have a
very low structural probability of ever being active (see, e.g. Quackenbush, 2006). Triadic
closure, regardless of the sign, thus exists also in the network of cooperation and conflict
between states. However, we observe that the tendency towards such closure is stronger
for structurally balanced relations than for structurally imbalanced ones.

A comparison of the two model specifications shown in Table 1 allows us to ascer-
tain whether specifying the triadic relationships endogenously affects substantive results
and model performance. Here, it is visible that the AIC of the model with the endoge-
nous statistics is lower than that with their exogenous versions. Specifying interdependent
dynamics in the interstate network via endogenous covariates hence increases model per-
formance compared to trying to capture them by including lagged, exogenous variables.

More strikingly, Table 1 shows that the substantive results of the corresponding en-
dogenous and exogenous measures of structural balance dynamics differ significantly. Con-
trasting the results under the endogenous and exogenous model specification, the latter
offers much more limited support for these notions. While the coefficient of CF+(yt ,yt−1)
is positive and statistically significant, its effect size is still very close to zero. The “friends
of friends are friends”-effect is thus found to be substantively negligible in Model 2. In
contrast, the coefficient of CE+(yt ,yt−1) is positive and substantively larger, while its
95%-confidence interval includes zero, indicating that the model cannot statistically dis-
tinguish it from zero as its estimation is very imprecise. The statistics CF−(yt ,yt−1) and
CE−(yt ,yt−1) mirror their corresponding endogenous terms from Model 1 in that both ex-
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hibit positive coefficients but, again, the first is substantively much smaller and the second
one very imprecisely estimated. On the whole, this comparison of an endogenous and an
exogenous specification of the triadic configurations motivated by structural balance theory
thus shows that Model 1 is preferable over Model 2. The model including endogenous terms
thus not only provides better performance than that with their exogenous counterparts but
these terms are also estimated to be more influential and more precisely.

4.4 Model Assessment
To assess the fit of the estimated SERGM, we employ a graphical tool inspired by Hunter
et al. (2008) to evaluate whether it can adequately represent topologies of the observed
network not explicitly incorporated as sufficient statistics in (3). Therefore, we sample net-
works from (3), compute the statistics, summarize them, and then compare this summary
to the statistics evaluated on the observed network. Heuristically, a model generating sim-
ulations that better reflect the observed values also has a better goodness-of-fit. To cover
signed networks, we investigate the observed and simulated distributions of positive and
negative degrees, and edgewise-shared enemies and friends in the interstate network.

We report the goodness-of-fit plots for Model 1 from Table 1 in Figure 3 for the year
2005. In each subplot, a series of box plots display the distribution of a given value of the
statistic under consideration over the networks simulated from the model via the Gibbs
Sampler detailed in Section 3. The red line indicates where the statistic is measured
in the observed network and should thus, ideally, lie close to the median value of the
simulated networks, i.e., the center of the box plots. In Figure 3, this is the case for all
four statistics, indicating that Model 1 under the estimated parameters generalizes well to
network topologies not explicitly incorporated in the sufficient statistics.

Together, the results presented here indicate that the SERGM is able to uncover struc-
tural balance dynamics in the interstate network and is preferable over approaches that seek
to model signed interstate networks under conditional independence, but also that further
substantial research on structural balance in international relations is neeeded. The Supple-
mentary Material employs the SERGM to analyze a cross-sectional network, representing
enmity and friendship among New Guinean Highland Tribes (Hage and Harary, 1984), and
shows its applicability when there is no observable temporal dependence structure.
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Figure 3: Goodness-of-fit assessment in year 2005.

5 Discussion
We extended the core regression model for network data to dynamic and cross-sectional
signed networks. Given the theoretical foundation of structural balance, we introduce novel
endogenous statistics that offer better performance than operationalizing them by lagged
covariates, as commonly done in previous research. Finally, we apply the method to recent
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data on militarized interstate disputes and defense cooperation agreements and provide a
software implementation with the R package ergm.sign.

From a substantive point of view, this research offers new insights on the empirical test-
ing of structural balance theory and challenges earlier inferential studies on the topic. How
one captures structural balance matters. We show that an approach relying on past obser-
vations of some ties within a triad to measure structural balance as an exogenous variable
can mischaracterize triadic (im-)balance. We thus develop endogenous balance measures
that can be used in the SERGM framework and show empirically that these endogenous
measures result in different substantive results as well as increased model performance as
compared to the exogenous ones. Most importantly, the exogenous measures do not affect
tie formation consistent with structural balance theory, whereas when employing the en-
dogenous ones, we find evidence in line with it. States are thus more likely to cooperate if
they share common partners or are hostile to the same enemies. This indicates that there is
structural balance in interstate cooperation and conflict, at least when studying the 2000s.
Future work in International Relations should seek to build on this fundamental result
to test whether it also holds for earlier periods, for instance the bipolar Cold War years,
and how structural balance interacts with exogenous factors such as military capabilities.
Beyond International Relations, the SERGM will also serve to advance research across all
Social Sciences, allowing researchers to investigate tie formation in networks of friendship
and enmity between school children, gangs, or social media accounts.

At the same time, we find that, generally, states appear more likely to interact, positively
or negatively, when they share friends or enemies. Substantively, this result suggests that,
additional to structural balance, something else is at play and may indicate that some
state dyads are structurally very unlikely to ever be active, due to the countries’ distance,
lack of economic development, and/or power projection capabilities, mirroring research
on politically “relevant” or “active” dyads (see Quackenbush, 2006). But this implied
variation in “reachability” between states also points to the fact that structural balance
theory was developed on complete networks, where every possible ties is realized with
either a negative or a positive sign, while empirical networks are usually incomplete (see
Easley and Kleinberg, 2010, ch.5). It thus lends some support to Lerner’s (2016) argument
that tests of structural balance theory should not examine states’ marginal probability
to cooperate or fight, but instead their probability of cooperating or fighting conditional
upon them interacting. However, following Lerner’s (2016, Sec. 4.2.1) argument on the
use of ERGMs in conjunction with this conditional viewpoint, it becomes evident that (3)
is consistent with it. Defining Y |±| with Y |±|i j = 1 if Yi j 6= “0” as the random adjacency
matrix describing any type of interaction and Y , be it positive or negative, one can derive
the following conditional probability distribution

Pθ (Yt = yt |Y |±|t = y
|±|
t ,Yt−1 = yt−1) =

exp
{

θ>s(yt ,yt−1)
}

κ̃(θ ,yt−1,y
|±|
t )

∀ yt ∈ Y±, (12)

where κ̃(θ ,yt−1,y
|±|
t ) = ∑

ỹ∈Y± I(ỹ|±| = y
|±|
t ) exp

{
θ>s(ỹ,yt−1)

}
. The conditional distri-

bution (12) is thus a SERGM with support limited to networks where y
|±|
t is equal to the

observed network and the coefficients of (12) are unchanged. Therefore, (3) implies (12).
Alternatively, some dyads’ lack of “reachability” may also indicate that dependency
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structures are not fully global, even in international relations where all actors know of
each other. Major powers should generally be able to reach all other states in the system,
thus also making their actions globally relevant, but smaller countries’ reach and relevance
will be more locally limited. Since the more general framework of ERGMs in (1) relies on
homogeneity assumptions implying that each endogenous mechanism has the same effect
in the entire network, model (3) might assume dependence between relations where, in
reality, there is none. One possible endeavor for future research would be adapting local
dependence (Schweinberger and Handcock, 2015) to signed and dynamic networks. This
approach assumes complex dependency solely within either observed or unobserved groups
of the actors, solving the obstacle of “reachability” between some countries in the network.
At the same time, other extensions of ERGMs, be it actor-specific random effects or curved
ERGMs where α in (8) is estimated from the data, are also feasible under (2) and (3).
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1 Technical Details
1.1 Partial Stepping Algorithm
Following standard theory of exponential families, θ maximizing the approximate likeli-
hood detailed in (11) of the main article only exists if the observed sufficient statistics∑T

t=1 s(yt ,yt−1) are inside the convex hull spanned by the sampled sufficient statistics(∑T
t=1 s(y

(m)
t ,yt−1), ...,

∑T
t=1 s(y

(M)
t ,yt−1)

)
(Barndorff-Nielsen, 1978). Since this condition

does not hold for arbitrary values of θ0, we adapt the partial stepping algorithm intro-
duced by Hummel et al. (2012) to find an adequate θ0.

In the kth step of this iterative procedure, we substitute ∑T
t=1 s(yt ,yt−1) in (11) of the

main article by

ξ (k) = γ (k)
T∑

t=1
s(yt ,yt−1) +

(
1− γ (k)

)
m̂(k), (1)

∗The authors gratefully acknowledge support from the German Federal Ministry of Education and
Research (BMBF) under Grant No. 01IS18036A and the German Research Foundation (DFG) for the
project TH 697/11-1: Arms Races in the Interwar Period 1919-1939. Global Structures of Weapons
Transfers and Destabilization.
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where γ (k) ∈ (0, 1] and m̂(k) = 1
M

∑M
m=1

∑T
t=1 s(y

(m)
t ,yt−1) is the estimated mean of the

sufficient statistics of networks sampled under θ (k). We select the largest possible value
of γ (k) in (1) such that even the point marginally closer to ∑T

t=1 s(yt ,yt−1), defined by
1.05γ (k)∑T

t=1 s(yt ,yt−1)+
(
1− 1.05γ (k)

)
m(k), is inside the convex hull spanned by the sam-

pled statistics. One can test whether a point ∈ Rp lies in this convex hull via a linear
programming problem (details can be found in Hummel et al., 2012 and Krivitsky et al.,
2022).

To update θ (k) to θ (k+1) for a given γ (k), we thus optimize

(
θ (k+1) − θ (k)

)>
ξ (k) − log

(
1
M

M∑

m=1
exp

{
(θ − θ0)>

( T∑

t=1
s(y(m)

t ,yt−1)
)})

, (2)

with a Newton-Raphson algorithm. To ease this step, we assume that ∑T
t=1 s(Yt ,yt−1)

follows a p-variate Gauss distribution with mean m(k) and covariance matrix Σ(k), which
is the covariance matrix of the sufficient statistics under θ (k). Both terms can be estimated
with samples Y (1), ...,Y (M). Thereby we can state the optimal value of (2) in closed form:

θ (k+1) = θ (k) +
(
Σ̂(k)

)−1 (
ξ (k) − m̂(k)

)
.

The algorithm terminates when we estimate γ (k) = 1 two iterations in a row, we then
continue the procedure with ξ (k) = ∑T

t=1 s(yt ,yt−1) until the estimates stabilize.

1.2 Evaluation of the AIC
To decide between alternative specifications of the sufficient statistics, a common method
is to select the model with the lowest AIC value. The AIC is defined as

AIC(M) = 2p− 2`(θ̂ ;y), (3)

where M is a SERGM for temporal networks with a particular specification of the sufficient
statistics and estimated parameters θ̂ and `(θ̂ ;y) = log

(∏T
t=1 Pθ (Yt = yt |Yt−1 = yt−1)

)

is the log likelihood. To evaluate (3), we have to calculate the value of the intractable
logarithmic likelihood at θ̂ , which we can restate by

`(θ̂ ;y) = r(θ̂ , θ̂Ind;y) + `(θ̂Ind;y), (4)

where θ̂Ind ∈ Rp is the estimate of the sub-model including only the subset from the
sufficient statistics that abide the conditional dependence assumption (the coefficients of
all other (endogenous) statistics are fixed at 0). Due to this characteristic, `(θ̂Ind;y) is
equivalent to the log likelihood in a multinomial regression and can be computed in closed
form. To evaluate r(θ̂ , θ̂Ind;y), we follow Hunter and Handcock (2006) and apply path
sampling (Gelman and Meng, 1998) to approximate

log
(
Eθ0

(
exp

{
(θ − θ0)>

( T∑

t=1
s(Yt ,yt−1)

)}))
= log

(
κ(θ )
κ(θ0)

)

2



from (11) in the main article in a more precise manner. If we specify a smooth mapping
θ : [0, 1] → Rp with θ (0) = θ̂Ind and θ (1) = θ̂ and let 0 = u0 < u1 < ... < uJ = 1 for
J ∈ N be a fixed grid of so-called bridges and its finite support, the following approximation
holds:

log
(

κ(θ )
κ(θ0)

)
=

J∑

j=1

1
u j − u j−1

Eθ(u j)





 d
du

θ (u)
∣∣∣∣∣
u=u j



>

T∑

t=1
s (Yt ,yt−1)




≈ 1
M

J∑

j=1

M∑

m=1

1
u j − u j−1





 d
du

θ (u)
∣∣∣∣∣
u=u j



>

T∑

t=1
s
(
y

( j,m)
t ,yt−1

)

 , (5)

where y( j,1)
t , ...,y

( j,M)
t are networks sampled conditional on yt−1 under θ (u j) ∀ j = 1, ..., J.

For our implementation, we set θ (u) = θ̂Ind + u(θ̂ − θ̂Ind), corresponding to a linear path
from θ̂Ind to θ̂ and d

duθ (u) = θ̂ − θ̂Ind. Plugging (5) into the first row of (11) of the main
article permits the computation of (3). For a more technical derivation of (5), we refer to
Hunter and Handcock, 2006 or Gelman and Meng, 1998.

2 Details on the Application to International Coop-
eration and Conflict

2.1 Data Visualization and Covariate Details
Here, we visualize the network and offer additional details regarding the data sources for
the application of the SERGM to interstate relations presented in Section 4. As discussed
in this section, we source data from Kinne (2020) and Palmer et al. (2021) to construct
a network, spanning the years 2000-2010, where positive ties represent Defense Coopera-
tion Agreements (DCAs) and negative ties Militarized Interstate Disputes (MIDs) between
states. A snapshot of the resulting network, as observed in 2005, is presented in Figure 1.

For this application, we also use additional data to construct our exogenous covariates.
The information underlying these variables, as well as the MID data, are sourced from the
peacesciencer package (Miller, 2021), but the original data sources are as follows: We
measure countries’ absolute political difference (Abs. Polity Diff.) using their polity scores
(Marshall et al., 2018), their relative military power by taking the ratio of their Composite
Indicators of National Capabilities∗ (CINC Ratio; Singer et al., 1972), their difference in
wealth via their absolute GDP difference (Abs. GDP Diff; Anders et al., 2020) and obtain
their geographical distance from Schvitz et al. (2022), log-transforming it before inclusion
(Abs. Distance). For each covariate, we separately estimate effects on the propensity of
a positive and negative edge. The only exception to this rule is the effect of the absolute
distance, which is assumed to be equal for both types of edges.

We now shortly discuss the estimation results for these covariates, as reported for Model
1 in Table 1 of the main article. These estimates are ceteris paribus, i.e. when accounting
for network dependencies via the endogenous terms. Regarding cooperation, countries are
found to be more likely to formally work together via defense cooperation agreements if they

∗We use the higher CINC value in the ratio’s numerator.
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Figure 1: Network of MIDs (red) and DCAs (blue) in 2005. The size of each node relates
to the degree (positive plus negative) of the respective country.

are politically more similar, more comparable in their wealth, but also differ more in their
material military capabilities. In particular the first result is in line with previous research
showing that similar regimes are more likely to ally (Lai and Reiter, 2000; Warren, 2016)
while the second indicates that for DCAs, which regulate activities such as the joint research
and development of military technology, countries’ economic match also plays a role. That
countries are more likely to cooperate as their CINC ratio increases indicates, instead, that
DCAs also follow a hierarchical structure where powerful states enter agreements with less
powerful ones (Lake, 2009). In contrast, we see that states are more likely to fight if their
CINCs, and hence military capabilities, are more similar whereas their differences in terms
of regime type and wealth are not found to play a role. Finally, countries’ absolute distance
exhibits a positive coefficient, indicating that, surprisingly, they are more likely to interact
the farther they are away from each other.

2.2 MCMC Diagnostics
In figures 2–6, we present some diagnostic plots of the MCMC chain used in the final
iteration of Model 1 in the application of Section 4 of the main article. We average the
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Figure 2: MCMC diagnostics of Model 1.

Markov chain of each sufficient statistic around its observed value for better readability.
Overall, one can observe that the model’s estimates converged, are not degenerate, and are
equal to the maximum likelihood estimates since the Markov chain oscillates around 0.
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Figure 3: MCMC diagnostics of Model 1.
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Figure 4: MCMC diagnostics of Model 1.
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Figure 5: MCMC diagnostics of Model 1.
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Figure 6: MCMC diagnostics of Model 1.
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Figure 7: Network of enmity (red) and friendship (red) among New Guinean Highland
tribes. The size of each node relates to the degree (positive plus negative) of the respective
people.

3 Application to a static network: Enmity and Friend-
ship among New Guinean Highland Tribes

3.1 Data Visualization and Sources
Next to dynamic networks one can also apply the SERGM to static networks. We demon-
strate this with network data on interactions between the New Guinean Highland Tribes
originally collected by Read (1954) and presented in Hage and Harary (1984). We source
these data from the R package signnet (Schoch, 2020). The network covers relations of
enmity and friendship among sixteen subtribes of the Gahuku-Gama, based on the an-
thropological work of Read (1954). Hage and Harary (1984) introduce it as an example
of a network which is not perfectly balanced due to the existence of triads with zero or
two positive ties but note that 82% of triads are balanced nonetheless. The full network
is plotted in Figure 7. We now apply the SERGM to this static network to test whether
structural balance effects can be recovered from it. The SERGM we specify includes edge
terms, GWESE, GWESF as well as a degree statistic. To show the flexibility with which
these statistics can be specified, we include the edge and GWESF terms separately for
positive and negative ties, but the GWESE and GWD statistics only for positive ties. For

10



Table 1: Results of the models.

Dependence Independence
Coef. CI Coef. CI

Edges + -8.744 [-12.182,-5.306] -0.76 [-1.13,-0.39]
Edges − -1.647 [-2.766,-0.528] -0.76 [-1.13,-0.39]
GWESE+ 0.45 [0.015,0.885] -
GWESF+ 0.068 [-0.228,0.364] -
GWESF− 0.932 [0.616,1.248] -
GWD+ 5.492 [2.252,8.732] -
AIC 139.593 170.355

the sake of comparison, we also estimate a model that drops all endogenous network terms
and hence includes only the two edge terms. Results of both models are presented in Table
1.

3.2 Results and Model Assessment
In Table 1, it is apparent that the fully specified Dependence model has a lower AIC than the
Independence model which does not account for endogenous network terms, indicating that
it is preferable in terms of performance. Table 1 also offers some evidence that structural
balance drives tie formation among the Gahuku-Gama: GWESF has a positive effect on
positive ties whose 95%-Confidence Intervals clearly exclude zero while its effect on negative
ties is very close to zero. This implies that here, friends of friends are indeed more often
friends but not less often enemies than one would expect by chance. GWESE+ also exhibits
a positive and statistically significant effect, suggesting that subtribes with a common
enemy are more likely to share an alliance than in a random network of the same size.
Finally, the effect of GWD+ is also positive and statistically significant, meaning that a
subtribe’s probability of gaining a further positive tie increases with the number of such
ties it already has.

Figure 8 offers a visual assessment of the goodness-of-fit of the Dependence model.
Here, we can see that while the observed network lines up quite well with the simulated
ones in terms of Edgewise-Shared Friends, model fit is more problematic for Edgewise-
Shared Enemies where the observed network is regularly outside the interquartile range
of the simulated networks. Similarly, the model does not do a good job of capturing the
observed network’s negative degree distribution. Based on these plots, one may consider
re-running the Dependence model while specifying GWESE for both positive and negative
ties and including GWD−. Nonetheless this application demonstrates the possibility to use
the SERGM for the analysis of static networks.
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Figure 8: Model Assessment of the New Guinean Highland Tribes.

3.3 MCMC Diagnostics
Finally, we also present the MCMC diagnostics for this additional application. Below are
thus shown the MCMC trace plots for all its covariates (Figures 9–10). Overall, these
MCMC diagnostics indicate a good convergence of the model.
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Figure 9: MCMC diagnostics of Dependence Model.
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Figure 10: MCMC diagnostics of Dependence Model.
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Cooperation and Conflict Tribes
Fixed α log(2) 1.5
Grid size for γ 3,000 2,000
Number of Bridges 16 16

Es
tim

at
io
n Burn-In 10,000 10,000

MCMC Interval 1,000 1,000
M 2,000 1,000
Start Empty False False

Va
ria

nc
e Burn-In 100,000 10,000

MCMC Interval 10,000 1,000
M 3,000 3,000
Start Empty True False

Br
id
ge

Burn-In 10,000 10,000
MCMC Interval 1,000 2,000
M 3,000 1,000
Start Empty True True

Table 2: Setting of the parameters that need to be set during the fitting of the MCMC
estimation procedure. One can define three different samplers, for the estimation of the
parameters, for the quantification of their variance, and for the evaluation of the AIC.

4 Computational Settings
We provide the tuning parameters of the MCMC algorithm and the models for both appli-
cations in Table 2. We performed sensitivity checks to guarantee that the reported findings
do not depend on the fixed parameters. In general, the values should depend on the density
(the lower to higher the burn-In and MCMC interval), size (the higher to higher the burn-In
and MCMC interval), and the strength of exogenous covariates (the higher to higher the
burn-In and MCMC interval) of the network.
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