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Abstract
To explore the driving forces behind innovation, we analyse the dynamic bipartite network of all inventors and
patents registered within the field of electrical engineering in Germany in the past two decades. To deal with
the sheer size of the data, we decompose the network by exploiting the fact that most inventors tend to only
stay active for a relatively short period. We thus propose a Temporal Exponential Random Graph Model with
time-varying actor set and sufficient statistics mirroring substantial expectations for our analysis. Our results
corroborate that inventor characteristics and team formation are essential to the dynamics of invention.
Keywords: bipartite networks, co-inventorship networks, inventors, knowledge flows, patent collaboration, temporal
exponential random graph models

1 Introduction
In the social sciences, bipartite networks are often used to represent and study affiliation of the
actors to some groups (such as directors on boards (Friel et al., 2016), or football players in teams
(Onody & de Castro, 2004)) and participation of people to events (such as researchers citing pa-
pers (Small, 1973), or actors in movies (Ahmed et al., 2007)). Research on bipartite structures ini-
tially focused on unimodal projections of the networks (Breiger, 1974), where we consider two
nodes of one type to be tied if they share at least one actor of the other kind. This practice forces
the researcher to give priority to one type of node over another and thus comes with a loss of pos-
sibly relevant information (Koskinen & Edling, 2012). Direct bipartite network analysis has first
been considered in Borgatti and Everett (1997), where traditional network analysis techniques are
systematically discussed for bipartite networks. Latapy et al. (2008) further adjusted known con-
cepts from unipartite networks, such as clustering and redundancy, to the bipartite case, with a
focus on large networks.
For this paper, we consider high-dimensional bipartite networks where actors are related to one

another through instantaneous events, which by definition only occur once. In particular, we focus
on the network formed by inventors residing inGermany and patents submitted between 1995 and
2015, where a tie between an inventor and a patent is present if the individual is listed among the
patent’s inventors. The resulting data structure is visualised in Figure 1a, where we can assign each
patent (or event, in the jargon of bipartite network analysis) to a time point and a set of co-
inventors. For instance, inventors A and B filed the joint patent with ID 1. We may represent
the bipartite network structure as an adjacency matrix with entries Yij, where

Received: January 21, 2022. Revised: January 4, 2023. Accepted: January 19, 2023
© (RSS) Royal Statistical Society 2023. All rights reserved. For permissions, please e-mail:
journals.permissions@oup.com

Journal of the Royal Statistical Society Series A:
Statistics in Society, 2023, 00, 1–20
https://doi.org/10.1093/jrsssa/qnad009

Original Article

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/advance-article/doi/10.1093/jrsssa/qnad009/7071940 by guest on 08 M

arch 2023

mailto:cornelius.fritz@stat.uni-muenchen.de
https://orcid.org/0000-0002-7781-223X
https://doi.org/10.1093/jrsssa/qnad009


Yij =
1 if actor i is on patent ID j
0 otherwise

{
(1)

and i ∈ I and j ∈ K, where we denote the complete set of inventors and patents by I and K, re-
spectively. In our example, this bipartite network is of massive dimensions, with |I| = 78.412 in-
ventors on a total of |K|= 126.388 filed patents.
The data allow us to gain insight into the dynamics and drivers of innovation, collaboration,

and knowledge flows in the private sector. Moreover, inventorship status on a patent is more le-
gally binding than authorship of academic papers, suggesting a greater degree of validity of the
results of network analysis in this context. The data, however, present some obstacles to their
study. First, the complete network is too massive, making analysis with most traditional network
techniques prohibitive. Second, the data carry structural zero entries since not all inventors are ac-
tive during the entire time period between 1995 and 2015. This phenomenon is partially due to the
retirement of inventors, who hence suffer from natural ‘actor mortality’. Moreover, inventors may
change their career track, e.g., by moving into managerial positions and ending their patenting ac-
tivities, thus reinforcing the aforementioned actor mortality in our data. Vice versa, new inventors
continuously enter the picture by producing their first patent, resulting in what we can call ‘actor
natality’ in the network. These aspects imply that the bipartite network matrix at hand contains
structural zeros for inventors which are not active at particular time points. To incorporate this
feature into a statistical network model, we consider the network dynamically and discretise the
time dimension by looking at yearly data, such that time takes values t= 1, 2, …, T, as sketched
in Figure 1a. In this context, T denotes the number of observed time points. We then allow the ac-
tor set to change at each time point. For the adjacency matrix of Figure 1a, this leads to the matrix
structure in Figure 1b, where e.g., inventor A retires after time point t= 1 and hence does not take
part in the patent market at t= 2. To encode this information on the changing composition of ac-
tors, we define activity sets I t to include all actors that are active at time point t. Further, let Kt

denote the event set, containing all patents submitted in a particular time window. We assume
that both sets are known for each time point t= 1,…, T. With this additional information, we de-
compose the observedmassive bipartite networkmatrix into smaller dimensional bipartite subma-
trices denoted by

Yt = (Yt,ij : i ∈ I t, j ∈ Kt), (2)

which are visualised for t= 1 and 2 by the grey-shaded areas in Figure 1b and where Yt,ik indicates
whether inventor i is a co-owner of patent k at time point t. Instead ofmodelling the entire bipartite
network, we break down our analysis to modellingYt given the previous bipartite networksY1,…
Yt−1. Incorporating the varying actor set as such in the analysis allows us to structurally account
for the observed actor mortality and natality while alsomaking the estimation problemmoreman-
ageable, thus solving both issues simultaneously.
This change in perspective induces a structure that deviates from conventionally analysed net-

works. To accommodate for it in a probabilistic modelling framework, we extend the Temporal
Exponential Random Graph Model (TERGM, Hanneke et al., 2010) towards dynamic bipartite
networks with varying actor set. For TERGMs, we assume that a discrete Markov chain describes
the generating process of the networks observed over time. The transition probabilities of jumping
from one network to another one are determined by an Exponential Random Graph Model
(ERGM, S. Wasserman & Pattison, 1996). ERGMs, on the other hand, were adapted to bipartite
data by Faust and Skvoretz (1999), while adjustments to incorporate the model specifications of
Snijders et al. (2006) were proposed in Wang, Robins, et al. (2013). These network models were
already successfully applied to static (Metz et al., 2019) as well as dynamic networks (Broekel &
Bednarz, 2018).
In addition to the dynamically varying actor set, the network at hand presents another particular

feature for which we need to account in the modelling. Collaborations generally build up over
time, rather than being confined to single time points. To adequately represent these mechanisms,
we need to include covariate information from the past and on the pairwise level of one actor set in
the model, which has not yet been implemented in the bipartite ERGM framework.We, therefore,
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define and include sufficient network statistics in our model to account for this particular kind of
dynamic interdependence.
Overall, the contributions of this paper are the following: We demonstrate how massive bipart-

ite networks can be broken down in a way that allows their analysis, and propose sufficient sta-
tistics for modelling bipartite temporal networks with varying actor set. Using the proposed
methodology, we then contribute to the growing literature on innovation by analysing a compre-
hensive patent and inventor population dataset. In particular, we study the network composed of
all electrical engineering patents filed between 1995 and 2015 by inventors located in Germany.
The unusually rich dataset allows us to study patterns of team formation in a more refined way
than has been feasible to date. In particular, our modelling approach enables us to quantify
how factors such as spatial proximity, teamwork, interlocking of collaborations, gender, and se-
niority affect the output of inventors. By answering these questions, our study contributes empir-
ical findings to current discussions on the role of gender and seniority in innovation and, more
generally, in the workplace.
The remainder of the paper is organised as follows: Section 2 gives a literature overview of the

research in patent data. In this section, we also describe the data in detail. Section 3 motivates the
model and introduces its novelties in more detail from a theoretical perspective. We present
the results of our empirical analysis in Section 4, while Section 5 wraps up the paper with some
concluding remarks.

2 Patent data
2.1 Research on patents and inventor teams

The analysis of patents and their impact and evolution over time is an important area of current
economic research. Hall and Harhoff (2012) provide a general overview of the field and its recent
developments. The holder of a patent receives a temporary right (typically for 20 years) to exclude
others from using the patented technology. The patent right can be extremely valuable, e.g., when
it becomes the foundation of an economic monopoly. Hence, patents can create powerful incen-
tives and induce invention and innovation efforts. In addition, patents require disclosure of the
patented invention and thus may invite others to build on the patented technology. These benefits
have to be held against the welfare losses due to reduced competition. The study of patents inmuch
of classic economic literature revolves around the trade-offs between these effects. Patent data are
also often used in innovation research to explore how new technologies develop and spread, which
innovation areas are the most active, how innovation areas and sub-areas are connected with one
another, and how productive firms or nations are with regards to their patenting output. Patents

(a) (b)

Figure 1. On the left side (a), the tripartite network structure of the patent data is illustrated with an example
encompassing four patents (tilted squares) submitted at two different time points (squares with rounded edges) by
five inventors (circles). The corresponding adjacency matrix is depicted on the right side (b). The two sub-matrices
defined in (2) are shaded in grey are Y1 in the top left and Y2 on the bottom right. (a) Network structure and (b)
adjacency matrix structure.

J R Stat Soc Series A: Statistics in Society, 2023, Vol. 00, No. 0 3
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/advance-article/doi/10.1093/jrsssa/qnad009/7071940 by guest on 08 M
arch 2023



contain references to prior patents, so-called patent citations (Alstott et al., 2017). The study of
patent citations and the network structures they form have become an important part of innov-
ation economics, since citations can be interpreted as an indicator of knowledge flows. The study
of citation networks has been an important area of research at least since the work of Garfield
(1955) (see also de Solla Price, 1965; Egghe & Rousseau, 1990). Co-authorship networks have
been extensively studied within the area of research publications (see, e.g., Leifeld, 2018; Melin
& Persson, 1996; Newman, 2004). The techniques developed for general citation networks can
naturally be applied to map patent citation networks as well (see, e.g., Li et al., 2007;
Verspagen, 2012; von Wartburg et al., 2005). Moreover, since patent data always indicate the
identity of the inventors contributing to the invention, they can be used to study the characteristics
of inventor teams and inventor collaboration networks. The focus is then shifted from citations to
co-inventorship of patents.
In both cases, i.e., patent citations and inventor teams, modernmethods of network analysis can

be applied to answer open research questions. In terms of the research questions tackled, our study
differs substantially from patent citation studies, since we do not focus on knowledge flows, but
rather on the logic of inventor team formation. We share this focus with studies of authorship
teams in academia, but we note an important institutional difference: More than 93% of patents
are filed by private enterprises (Giuri et al., 2007). Other than in scientific co-authoring, the com-
position of co-inventor teams does not just reflect the preferences of the authors (inventors), but it
involves, in almost all cases, a managerial decision that is guided by profit concerns. Thus, the pat-
terns we uncover in our analysis are not just a reflection of individual preferences, but also of the
employer’s productivity calculus. This feature of our setting will be particularly important when
interpreting results and comparing them to results from other studies (e.g., for gender homophily).
For patent data, it is possible to construct the co-inventorship network in two main ways. One

can directly analyse the bipartite network formed by the patents and their inventors (see, e.g.,
Balconi et al., 2004). Alternatively, one projects the bipartite structure on one of the two modes,
which in the context of patent data is usually that of inventors. This entails a network composed
only of inventors, in which two nodes (inventors) are connected if they have at least one patent in
common (Bauer et al., 2022; Ejermo&Karlsson, 2006). Much of the literature in this area utilises
such projections, since models for unimodal networks are developed to a greater extent. Several
studies have used unipartite ERGMs to study knowledge diffusion networks in various domains
(see e.g., Jiang et al., 2013; Keegan et al., 2012). As ERGMs allow for modelling networks with
different types of ties (see Chen, 2021, for an overview), it is also possible to simultaneously model
inventor-patent ties in a unipartite, multilayer network context, as done by Jiang et al. (2015). As
explained in the introduction, however, projecting everything on one mode inevitably results in a
loss of information on the mode that is excluded.
In the case of patents and inventors, the fact that two inventors collaborated on many patents

together, together with the size of these patents, brings much information which is not available in
the projection, where the inventors are simply linked together. This loss of information is made
apparent by the fact that there are many bipartite graphs which lead to the same projection
(Latapy et al., 2008). Preserving the original bipartite structure thus enables us to gain more de-
tailed and accurate insight on the mechanisms at play by estimating effects which would not be
visible by considering the projection, as will be shown in the application section.

2.2 Data description

We consider patent applications submitted to the European Patent Office or the German Patent
and TrademarkOffice (Deutsches Patent- undMarkenamt) between 1995 and 2015.More specif-
ically, we look at patents filed within the main area of electrical engineering, for which at least one
of the inventors listed on the patent has a residential address in Germany. For assigning each pa-
tent to a single time point, we use the priority date, i.e., the first-time filing date of a patent (which
precedes the publication and the grant date). We focus on electrical engineering as it is one of the
largest main areas and as it has seen particularly high growth rates since 2010. Moreover, collab-
orations between inventors are commonplace in this field. For our analyses, we focus on the data
starting in 2000 and condition on the information from the first five years considered (i.e., from
1995 to 1999) to derive covariates from them. The dataset can be represented as a massive
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bipartite network, for which the observed adjacency matrix (1) is visualised in Figure 2. From the
plot, we can get a clear sense of the previously described actor natality phenomenon, with new in-
ventors becoming active at every time point. Moreover, the figure demonstrates the limits of de-
scriptive analysis when dealing with such large networks, highlighting the need for adequate
models to learn something from such data.
As described in Section 1, we instead consider this a dynamic bipartite network, discretising the

time steps yearly such that time takes values t= 1, 2,…, T. In our notation, t= 1 translates to the
year 2000. We also allow the actor set to change at each time point so that we end up with T bi-
partite networks in which the nodes are given by the active inventors at each time point. Resulting
from this, we include new inventors that are active for the first time and remove inactive ones from
the network at each time point t. The latter point is motivated by the empirical data, which sug-
gests that if previously active inventors do not produce any patents for a long time, it is likely that
they will not be active anymore. This phenomenon can stem from a change in career paths (moved
up to amanagement positionwhere writing patents is not among thework tasks) or retirement. To
this point, we show the Kaplan–Meier estimate of the time passing between two consecutive pat-
ents by the same inventor in Figure 3. As indicated by the dashed grey lines, about 85% of patents
by a specific inventor that already had at least one patent are submitted within two years from the
previous one. Given this, we define an inventor as active at time t if they had at least one patent in
the two years prior to t. Note that by doing so we do not disregard the remaining 15% of the data,
but simply label these inventors as inactive for a specific period, i.e., until they appear on another
patent.
As we are interested in investigating the drivers of patented innovation and inventor collabor-

ation, we exclude patents developed by a single inventor from the modelled patent set. Moreover,
we exclude inventors with no address in Germany from the actor set, as theymake up less than 1%

Figure 2. Graphical representation of the adjacencymatrix of the patent–inventor network between 2000 and 2015.
A dot in position (i, k) indicates that inventor i is a co-owner of patent k.
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of the population. In addition to the residence address of each inventor and the date of each patent,
we also incorporate information on the gender of each inventor in our model. This set of exogen-
ous covariates aligns with previous work on co-citation networks (Leifeld, 2018).

3 Modelling patent data as bipartite networks
3.1 Temporal exponential random graph models for bipartite networks

Having laid out the available data, we now formulate a generative network model for the bipartite
networks at hand. This framework should allow us to differentiate between randomand structural
characteristics of the network to support or disregard our substantive expectations, such as, for
example, whether or not two inventors that teamed up in the past are likely to produce another
patent together in the future. To do so we first need to introduce some additional notation. As
a general rule, we write Yt to denote the network when viewed as a random variable, and yt =
(yt,ik : i ∈ I t, k ∈ Kt) if we relate to the observed counterpart. In this context, yt,ik= 1 translates
to inventor i being a co-owner of patent k, while yt,ik= 0 indicates the contrary. As a result, the
observed networks are binary and undirected, i.e., yt ∈ {0, 1}|I t |×|Kt|. We denote the space of all
networks that could potentially be observed at time point t byYt. For our application, as explained
in the previous section, the latter is restricted to only allow for patents which have at least two
inventors.
We specify the joint probability for the set of networks through

Pθ(Y1, . . . , YT) =
∏T
t=1

Pθ(Yt |Ht), (3)

whereHt defines the history, composed of the bipartite networks and covariates observed before t.
The covariates can encompass dyadic and nodal information, but to make the notation less cum-
bersome we suppress the explicit inclusion of the covariates in the formulae. Following Hanneke
et al. (2010), we simplify (3) by assuming that the temporal dependencies are constrained to a fixed
time lag, i.e.,

Pθ(Yt |Ht) = Pθ(Yt |Yt−1 = yt−1, . . . , Yt−s = yt−s), (4)

for s ∈ N. TheMarkov property then allows us to postulate an ERGM for the transition probabil-
ity (4) in the following form:

Pθ(Yt |Yt−1 = yt−1, . . . , Yt−s = yt−s) =
exp {θ⊤s(yt, . . . , yt−s)}
κ(θ, yt−1, . . . , yt−s)

, (5)

where θ = (θ1, . . . , θq) ∈ Rq is a q-dimensional vector of parameters, s :Yt × · · · × Yt−s � Rq is
the function calculating the vector of sufficient statistics and
κ(θ, yt−1, . . . , yt−s) :=

∑
y∈Yt

exp {θ⊤s(y, yt−1, . . . , yt−s)} is a normalising factor (see also

Figure 3. Kaplan–Meier estimate of the duration between consecutive patents submitted between 2000 and 2015.
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Cranmer et al., 2021, Chapter 6 and Leifeld et al., 2018). We obtain a canonical exponential fam-
ily model with known characteristics (Barndorff-Nielsen, 1978), which come in handy when
quantifying the uncertainty of the estimates of θ. Note that for the application to patent data,
the coefficients governing the transition from one time point to another are not necessarily con-
stant over time due to external shocks, such as, for example, the dot-com bubble and the 2008 fi-
nancial crisis, which may affect the activity of inventors. For this reason, we let θ in (5) flexibly
depend on time and estimate it separately for each time point t, but omit the subscript t from
the formulae for notational simplicity. Thurner et al. (2018) and Cranmer et al. (2014) also opted
for this parametrisation of dynamic coefficients, while smooth functions over time are employed in
Lebacher et al. (2021).
Interpreting the coefficients θ can be done both at the global network level as well on the single

tie level. We illustrate the interpretation for θp, defined as the coefficient corresponding to the pth
sufficient statistic from (5). For the former, θp> 0 implies that networks with higher values of the
corresponding sufficient statistic become increasingly more likely, while θp< 0 implies the con-
verse. For the latter, we define so-called change statistics, which are the change in the sufficient
statistics caused by switching the entry yt,ik from 0 to 1. Formally,

Δt,ik(yt, . . . , yt−s) = s(y+t,ik, yt−1, . . . , yt−s) − s(y−t,ik, yt−1, . . . , yt−s), (6)

where y+t,ik is the network yt with entry yt,ik fixed at 1, while the entry is set to 0 in y−t,ik. For each
possible inventor-patent connection, we can then state the corresponding probability conditional-
ly on the remaining bipartite network denoted by yCt,ik, i.e., the complete network yt excluding the
single entry yt,ik. This leads to

Pθ(Yt,ik = 1 |YC
t,ik = yCt,ik) =

exp {θ⊤Δt,ik(yt, . . . , yt−s)}

1 + exp {θ⊤Δt,ik(yt, . . . , yt−s)}
. (7)

Through this expression we can relate θ, the canonical parameter of (5), to the conditional prob-
ability of inventor i to be co-owner of patent k. We can thereby derive an interpretation of the co-
efficients reminiscent of common logistic regression: if adding the tie yt,ik to the network raises the
pth entry of Δt,ik(yt, …, yt−s) by one unit, the conditional log-odds of Yt,ik are, ceteris paribus, al-
tered by the additive factor θp (Goodreau et al., 2009).

3.2 Sufficient statistics for bipartite patent data

The main ingredient of model (5) is the set of sufficient statistics, which translates to a particular
dependence structure assumed for the edges in the observed bipartite network (Wang, Pattison,
et al., 2013). A statistic that is typically included is the number of edges at time point t, i.e.,
sedges(yt, . . . , yt−s) = |yt|, which can be comprehended as the equivalent of an intercept term in
standard regression models (Goodreau et al., 2009). As we are in a dynamic setting in which add-
itional information on past networks is available, we can define statistics that depend on the past
networks, such as the number of patents in the previous s years for each actor active at time point t:

spastpatent(yt, . . . , yt−s) =
∑
i∈I t

∑
k∈Kt

yt,ik
∑t−1
u=t−s

∑
l∈Ku

yu,il. (8)

As the patent network presents some particular dependence structures, more advanced types of
statistics are needed, which we describe in the following.

3.2.1 Pairwise statistics of inventors
One drawback of representing our patent data as a bipartite adjacency matrix instead of the
one-mode-projected version is that incorporating information on the pairwise inventor-
to-inventor level is not straightforward. We therefore introduce assortative two-star statistics ex-
tending the work of Bomiriya (2014, Chapter 2) and Metz et al. (2019) on homophily, which is
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defined as the mechanism driving ties between similar individuals (McPherson et al., 2001), for
bipartite networks. In the context of relational event models for bipartite interactions, Malang
et al. (2019) use tie-specific, as opposed to global, variants of these statistics based on exponential-
ly decreasing temporal weights of past events. We take the patent-based two-star statistic as start-
ing point, which for yt is defined by

stwostar.patent(yt) =
1
2

∑
k∈Kt

∑
i∈I t

yt,ik
∑
j≠i

yt,jk

( )
. (9)

The tendency to interact with one another is often based on the similarity of a factor variable
ut = (ut,i; i ∈ I t). We therefore define the indicator matrix xt ∈ {0, 1}|I t|×|I t | with entries
xt,ij = I(ut,i = ut,j). In line with Bomiriya (2014, Chapter 2), this allows to augment the two-star
statistic (9) in the form

shomophily.x(yt) =
1
2

∑
k∈Kt

∑
i∈I t

yt,ik
∑
j≠i

yt,jkxt,ij

( )
. (10)

Next, we followMetz et al. (2019) and generalise (10) by not restricting ourselves to any particular
definition of xt, but letting thematrix be an arbitrary function of the networks from the past s years
and other exogenous information. To further correct for different sizes of patents, i.e., the number
of inventors co-owning the patent, we normalise the statistic by the degree of each patent, whereby
the resulting statistic is defined through:

sassort.x(yt, . . . , yt−s) =
1
2

∑
k∈Kt

∑
i∈I t

yt,ik 100 ×

∑
j≠i yt,jkxt,ij∑

j≠i yt,jk

( )
. (11)

To obtain a less cluttered notation, we keep the dependence of xt,ij on yt−1, …, yt−s implicit. The
corresponding change statistic for an edge between inventor i and patent k is then

Δt,ik,assort.x(yt, . . . , yt−s) = 100 ×

∑
j≠i yt,jkxt,ij∑

j≠i yt,jk
, (12)

which can be interpreted as the percentage of inventors on patent k that match with inventor i in
matrix x. We multiply the statistic by 100, which does not affect the model itself but eases inter-
pretation (as a unit increase is now equivalent to a single percentage change). To give an example
of a statistic of this type, we can combine (12) with matrix xPt , for which entry xPt,ij is 1 if inventor i
and j already had a joint patent in the last s years and 0 otherwise. The resulting statistic measures
how previous collaboration among inventors affects the propensity of future collaboration.
Section 4 provides more examples of such statistics.

3.2.2 Node set statistics
As a result of the actor natality and mortality described in the Introduction, we can split the set of
inventors I t at each time step t= 1, …, T into new inventors with their first patent in t,
I+
t = {i ∈ I t;

∑t−1
u=t−s

∑
k∈Ku

yu,ik = 0}, and inventors that were already active prior to t,

I−
t = {i ∈ I t;

∑t−1
u=t−s

∑
k∈Ku

yu,ik > 0}. We here use the term ‘new inventors’ for actors
in I+

t and ‘experienced inventors’ for those in I−
t . Given these sets, we define

y+t = (yt,ik)i∈I+
t ,k∈Kt

and y−t = (yt,ik)i∈I−
t ,k∈Kt

to be the sub-networks of yt made up of new and expe-
rienced inventors, respectively.
It is apparent that statistics on past behaviour, such as (8), are notmeaningful for inventors from

I+
t , since no historical data is available for those inventors at time t. To account for this, we de-

compose the statistics s(yt, …, yt−s) into three types of terms, namely s+(y+t ), s
−(y−t , . . . , yt−s),

and s±(yt), which are defined as statistics that only relate to either y+t , y
−
t and past networks or
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the full set of inventors yt, respectively. Defining the corresponding coefficients (θ+, θ−, θ±) and
change statistics (Δ+

t,ik, Δ
−
t,ik, Δ

±
t,ik) accordingly yields

Pθ(Yt,ik = 1 |YC
t,ik = yCt,ik) =

π+t,ik(yt), if i ∈ I+
t (new inventor)

π−t,ik(yt, . . . , yt−s), if i ∈ I−
t (experienced inventor),

{
(13)

where π+t,ik(yt) and π−t,ik(yt, . . . , yt−s) are given by

π+t,ik(yt) =
exp {(θ+)⊤Δ+

t,ik(y
+
t ) + (θ±)⊤Δ±

t,ik(yt)}

1 + exp {(θ+)⊤Δ+
t,ik(y

+
t ) + (θ±)⊤Δ±

t,ik(yt)}

π−t,ik(yt, . . . , yt−s) =
exp {(θ−)⊤Δ−

t,ik(y
−
t , . . . , yt−s) + (θ±)⊤Δ±

t,ik(yt)}

1 + exp {(θ−)⊤Δ−
t,ik(y−t , . . . , yt−s) + (θ±)⊤Δ±

t,ik(yt)}
.

As an example, for the common edge statistic sedges(yt, . . . , yt−s), the aforementioned decompos-
ition means we can define sNew(y+t ) = |y+t | and sExperienced(y−t , . . . , yt−s) = |y−t |, to allow for new and
experienced inventors to generally have a different propensity to be part of a patent. Note that the
splitting of the node set as in (13) does not assume any (in)dependence structure between Y+

t and
Y−

t , but rather serves as an aid to specify additional terms and interpret the coefficients at a finer
level, as just exemplified for the edge statistic.

3.2.3 Adjustment for varying network size
As argued in Krivitsky et al. (2011), the task of comparing estimated coefficients of two models
with identical specifications but different network sizes is non-trivial. This behaviour is due to
the fact that including the edge count statistic from the previous paragraph in a TERGM assumes
density invariance as the network grows. This characteristic seldom holds for real-world networks
as it implies a linearly growing mean degree of all involved actors. In the case of our longitudinal
patent network, the number and composition of inventors and patents change from year to year,
thus correcting for this is of practical importance to be able to compare coefficient estimates at dif-
ferent time points. To solve the issue, we follow the suggestion of Krivitsky et al. (2011) and in-
corporate the offset term 1/(|I t| + |Kt|) to achieve asymptotically constant mean-degree scaling
as the composition of inventors and patents change over time.

3.3 Estimation and inference

We now seek to estimate the parameter θ by maximising the logarithmic likelihood constructed
from (5) for the transition between time points t− 1 and t. Analysing each transition one at a
time enables the use of software for static networks, such as ergm (Hunter et al., 2013). If some
of the coefficients are constant over some periods, one could apply the block-diagonal approach
of Leifeld et al. (2018). We follow the Markov Chain Monte Carlo Maximum-Likelihood
Estimation procedure introduced by Geyer and Thompson (1992) and adapted to ERGMs by
Hunter and Handcock (2006). In our application, we repeat this for each available time step
t= 1, …, T.
First, note that subtracting any constant from the logarithmic likelihood constructed from (5)

does not change its maximum. We can therefore subtract the logarithmic likelihood evaluated
at an arbitrary value of the parameter θ, i.e., θ0, which yields the equivalent objective function

ℓ(θ) − ℓ(θ0) = (θ − θ0)
⊤s(yt, . . . , yt−s) − log (Eθ0 (exp {(θ − θ0)

⊤s(Yt, . . . , yt−s)})), (14)

where Eθ(f (X)) is the expected value of random variableX characterised by parameter θ and trans-
formed through the arbitrary function f (·). As described in Hunter and Handcock (2006), one can
evaluate this objective function by approximating the expected value by generating random net-
works Y(1), Y(2), …, Y(M ) from (5) under θ0. In particular, we approximate the expected value
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in (14) through a Monte Carlo quadrature:

Eθ0 (exp {(θ − θ0)
⊤s(Yt, . . . , yt−s)}) ≈

1
M

∑M
m=1

exp {(θ − θ0)
⊤s(y(m), yt−1, . . . , yt−s)}. (15)

For sufficiently large M, the convergence of this expectation is guaranteed, and we can plug (15)
into (14) and apply Newton–Raphson-type methods to maximise it with respect to θ. Sampling
from a probability distribution with intractable normalisation constant, such as (5), is achieved
by a Metropolis–Hastings algorithm. In particular, we first sample an edge, defined as the tuple
(i, k), at random, and consecutively toggle the corresponding entry of Yt from 0 to 1 with prob-
ability equal to (7) (for more details see Hunter et al., 2013). Due to the large size of the patent
networks, we start with the observed network, propose 15.000 of such changes and then stop
the Markov chain. This procedure is hence equivalent to contrastive divergence as introduced
by Hinton (2002) and adapted to ERGMs by Krivitsky (2017).
Inference on the estimates is drawn based on the Fisher matrix I(θ), which equals the variance of

the sufficient statistics for exponential family distributions (L. Wasserman, 2004). Thus, we can
approximate the Fisher matrix through

Î(θ) = Varθ(s(Yt, . . . , yt−s)) ≈
1
M

∑M
m=1

(s(y(m), yt−1, . . . , yt−s) − �s(y(1), . . . , y(M)))

× (s(y(m), yt−1, . . . , yt−s) − �s(y(1), . . . , y(M)))⊤,

where �s(y(1), . . . , y(M)) = (1/M)
∑M

m=1 s(y
(m), yt−1, . . . , yt−s) is the vector containing the averages

of the sufficient statistics from the simulated networks y(1), …, y(M ), which are, in turn, drawn
from the fitted model, with the parameter θ set to its maximum-likelihood estimate.

4 Application to inventor team formation
We now present the results of our application, in which we model inventor team formation using
the patent data introduced in Section 2. For each statistic included in the model, we explain its
meaning, interpret the corresponding estimated coefficient, and then discuss the relationship of
our results to prior literature. Further details on the specification of each sufficient statistic can
be found in Appendix A. We further provide MCMC diagnostics and goodness-of-fit assessments
as proposed by Hunter et al. (2008) in the online SupplementaryMaterial. Due to the slow inertia
of patent submissions visible in Figure 3, we set s= 5, i.e., consider data from the last five years to
be relevant for modelling the current network. This allows us to have enough information for cap-
turing long-range dependence in the networks involving repeated patent submissions of single ac-
tors as well as groups of actors.

4.1 Network effects

4.1.1 Propensity to invent
To account for the changing activity levels over time, we incorporate a statistic that counts how
many edges are in the network. Following Section 3.2, we split this term into separate statistics
for experienced and new inventors. Heuristically, one can interpret the corresponding coefficients
as the general propensity to form ties, i.e., participate in a patent, for the two inventor sets, respect-
ively. Note that it would not be possible to estimate this effect by modelling a unipartite projection
on inventors: in that case, the intercept term would only measure the propensity for inventors to
collaborate, regardless of the number of patents produced. The plot of the estimates for the pro-
pensity to invent over time is shown in the upper left panel of Figure 4. It exhibits a different level
of activity for new and experienced inventors. We expect this by design, as new inventors enter the
network precisely because they are active at time t, while experienced ones might only have been
active in the past. Overall, we observe a steady increase in activity in the network from 2008 on-
ward for both sets of inventors.
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4.1.2 Two-star statistics
Two-star statistics relate to the concept of centrality (S. Wasserman & Faust, 1994). For bipartite
networks, they can be defined with respect to each of the two modes (inventors and patents, re-
spectively). For inventors the statistic is given in Appendix A and expresses whether inventor i
is more or less likely to invent an additional patent in year t, given that he/she is (co-)owner of
at least another patent in that year. For patents, the statistic relates to the number of inventors
per patent and is given in (9). These effects could not be estimated for a unipartite projection
on inventors: in that case, the two-star statistic would simply relate to the propensity for inventors
to have additional collaborators, with information on the number of patents and their size being
lost. The top right panel of Figure 5 depicts both estimates for the two-star statistics. For inventors,
the estimates take small positive values for most time points, without much temporal variation.
This indicates a slight tendency towards centralisation for inventors, i.e., inventors aiming to sub-
mit multiple patents per year. For patents the corresponding two-star estimates are larger, i.e., pat-
ents tend to be owned by multiple inventors. The two-star effect slowly decreases since 2011,
meaning that the number of owners per patent is getting smaller. The variance for the estimated
two-star patent effect is generally larger than the estimate of the corresponding two-star inventor
effect, which stems from the fact that there are fewer patents than inventors in a single year.

4.1.3 Team persistence
Most patented inventions are the result of teamwork (Giuri et al., 2007), which leads to the build-
up of valuable team-specific capital (Jaravel et al., 2018). We therefore expect past collaboration

Figure 4. Estimated time-varying coefficients regarding the propensity to invent, two-star statistics, team
persistence and collaboration interlocking.
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to positively affect the propensity for two inventors to collaborate again. To account for this effect,
we include a team persistence statistic based on the pairwise statistics of inventors proposed in 3.2
in the model. The statistic, which could also be termed ‘repetition’ (or ‘reciprocity’, as defined in
Leifeld & Brandenberger, 2019), is visually represented in Figure 5a, and rests on the definition of
matrix xPt , whose (i, j)th entry is 1 if inventors i and j have already co-invented a patent in the pre-
vious five years, and 0 otherwise. The bottom left panel of Figure 4 depicts the corresponding co-
efficient estimate, which is positive and significantly different from zero over time. This finding
corroborates our anticipations that, controlling for the other factors, two inventors aremore likely
to jointly produce a patent if they already worked on an invention together in the past. Hence,
teams of inventors play an important role in patent creation.

4.1.4 Collaboration interlocking
In addition to investigating the persistence of collaborations, it is of interest to understand how
having had a common partner in the past influences the tendency to develop a joint patent in
the present. We account for this by including the collaboration interlocking statistic in our model.
By common partners we are referring to actors such as inventor h for inventors i and j in Figure 5b.
We define the statistic again by pairwise statistics of inventors through the matrix xCIt , where the
binary information of whether or not inventors i and j have at least one common partner is en-
coded in the (i, j)th entry. The related coefficient estimates are shown in the bottom right panel
of Figure 4, where we notice that the estimate attains significantly positive values throughout
the observational period. This result suggests that if two inventors i and j both had a patent
with the same inventor h, they are generally more likely to co-invent in the future. Our finding
holds controlling for all other features in our model (including the previously described team per-
sistence statistic). This effect can be considered similar to triadic closure in unimodal networks,
i.e., ‘a collaborator of my collaborator is more likely to become my collaborator’. The result
thus supports the idea that the creation of inventor teams is often promoted via common col-
leagues and that informal knowledge flows are key to the invention process (see Giuri &
Mariani, 2013 and references cited therein).

4.2 Effects of inventor-specific covariates

4.2.1 Spatial proximity
Many patents are created in a workplace environment (Giuri et al., 2007). For this reason, we
would expect inventors that live close to each other to be more likely to invent together.
Moreover, there is empirical evidence that collaboration is more likely between inventors that

(a) (b)

Figure 5. Illustration of the change statistics related to assortative network statistics for team persistence (a) and
collaboration interlocking (b). Circles represent inventors, and squares are patents. The dashed line indicates a
possible edge at time point t, while black lines represent edges given at time point t. Grey lines, on the other hand,
display past connections, and grey squares stand for past patents. (a) Team persistence and (b) collaboration
interlocking.
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live close to one another even if they do not share the same employer (e.g., Crescenzi et al., 2016).
For these reasons, we include a spatial proximity statistic in our model, where we define spatial
proximity as living within a range of 50 km. We encode this proximity information in a binary
matrix xSP and incorporate it in the model as a pairwise statistic of inventors. The top left panel
of Figure 6 depicts the estimated coefficients for the statistic. The positive values attained over
time confirm that inventors living near each other have a higher chance to collaborate. We can
also see that the effect goes down over time from 2010 onward; this makes sense in an increasingly
interconnected society, where more andmore connections are formed through the web in addition
to physical ones.

4.2.2 Seniority
The top right panel in Figure 6 depicts the effect of the number of previously owned patents by
each inventor in the past five years. The corresponding statistic can be viewed as a measure of in-
ventor seniority, where inventors with more patents in the past are considered to be senior. As this
statistic would trivially be a structural zero for new inventors, it is only computed for the set of
inventors which were previously active in the network (experienced inventors). This is another ef-
fect we would not be able to estimate if we only considered the unipartite projected network of
inventors. The negative coefficient estimate here suggests that, conditional on all other statistics
included in the model, senior inventors have a lower propensity to create new patents. Prior re-
search has shown that career dynamics of inventors are complex as economic opportunities, prod-
uctivity and personal preferences interact (see, e.g., Allen & Katz, 1992; Bell et al., 2019). But our

Figure 6. Estimated time-varying coefficients regarding the spatial proximity, seniority, and gender of inventors.
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results are consistent with earlier results indicating that with greater seniority, inventors take over
managerial responsibilities within the same firm, or that high visibility of their invention output
also leads them to move to new employers and tasks, thus lowering (or halting) their invention
output.

4.2.3 Gender and gender homophily
Another variable of interest in the realm of innovation research is gender. Many researchers have
expressed concerns about the sparse representation of women among inventors (typically far less
than 10%) and possible wage discrimination (see, e.g., Hoisl & Mariani, 2017; Jensen et al.,
2018). These studies established gender as an essential topic in innovation economics. We incorp-
orate gender in our model in two ways, i.e., as a main effect and as a homophily effect (as intro-
duced in (10)). The two plots at the bottom of Figure 6 show the effects of gender on the propensity
to create patents (left) and on homophily, i.e., the tendency of inventing together with people of the
same gender (right). Note that both effects need to be interpreted keeping in mind that the vast
majority of the actors in the network are male (96%). From the plot on the bottom left, we can
see how, while male inventors seem to be slightly more active, all in all male and female inventors
did not show significant differences in their propensity to invent. Note that this holds given the
inclusion of those inventors in the network, i.e., given that theywere already inventors. The gender
homophily plot shows different results; here we see that, while male inventors seem to have the
same likelihood to form patents with both genders, female inventors tend to have more collabo-
rations with other females than with males. While the effect is quite sizeable in absolute value,
the uncertainty here is considerable given the small number of female actors in the network.
Still, we can see this as weak evidence for a gender homophily effect for female inventors. These
results are consistent with earlier findings by Whittington (2018), who studies the role of gender
in life science inventor teams.

5 Discussion
This paper analyses a massive bipartite network, consisting of all inventors and collaborative pat-
ents filed between 1995 and 2015 in electrical engineering. To account for the sheer size of the
complete network and the structural zeros in the related bipartite adjacency matrix, we suggested
a temporal decomposition of the data intomultiple smaller networks. Guided by substantive ques-
tions posed by innovation research, we then proposed a set of bipartite network statistics focused
on gender issues, team persistence, collaboration interlocking, and spatial proximity.
Time-varying actor sets due to actor mortality and natality are often observed in networks be-

yond the realm of patent data. For instance, scientific collaboration behaves similarly, as many
PhD students do not pursue an academic career and hence have a short lifespan in the scientific
collaboration network. At the same time, new PhD students continuously enter the scientific
world. Therefore, the proposed temporal decomposition and the employed network terms exploit-
ing pairwise information on either mode of actors can also be used in other settings.
In addition to the methodological contributions, our study offers several novel results concern-

ing the substantive analysis. We utilise a population dataset spanning 20 years (1995–2015). The
time span and the availability of population data are crucial to assess the team formation process
reliably. Using a population dataset of this size is unique in the literature on inventor team forma-
tion. Moreover, while much of the literature has focused on the relationship between team char-
acteristics and performance, there are very few studies on the actual process of inventor team
formation. While some of the variables we are using have been discussed and utilised in other do-
mains, we are unaware of inventor team studies employing datawith a similar breadth of team and
inventor descriptors. This breadth adds to the novelty of our study. We also note that our variable
set reflects a number of meaningful concerns such as inclusiveness, gender equality, and seniority.
The results should therefore be of considerable interest to policymakers.
Still, we want to address some limitations in our analysis, which would benefit from further re-

search. First, our definition of the actor sets is based on a simple heuristic we determined in a data-
driven manner. However, this practice might bias our findings concerning degree-related statistics
since the exact number of isolated inventors is not known but assumed.More complexmethods to
identify active inventors based on further exogenous data, such as job histories, might be a fruitful
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future endeavour. Second, we assumed the parameters to be different each year. Extending the ap-
proach of Cranmer et al. (2014), one could incorporate a change-point detection directly into the
TERGM framework to identify periods over which the coefficients are constant from the observed
data. Note that, to facilitate building on our research, we make our implementation available
through the R software package patent.ergm. Moreover, to guarantee the replicability of our re-
sults, we make the full data and code available online on a GitHub repository. This repository also
includes the R package patent.ergm.
All in all, we show how spatial proximity, teamwork and interlocking of collaborations posi-

tively impact the output of inventors. Further, we demonstrate how inventors’ characteristics,
such as gender and seniority, play a significant role in the process, and identify gender homophily
as a critical determinant of inventor team formation. Our application to inventor teams presents
an alternative to classical forms of analysis of patenting and inventorship networks. While prior
studies are almost exclusively focused on analysing the underlying mechanisms one at a time,
we model them simultaneously in the framework of bipartite networks. Our study thus provides
an effective alternative to classical forms of regression-based analysis of innovation and the mech-
anisms driving it.
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MCMC diagnostics, in our GitHub repository, available at https://github.com/corneliusfritz/
Modelling-German-patents-and-inventors. Moreover, this repository includes the package
ergm.patent that implements the pairwise statistics introduced in Section 3.2.1.

Appendix A. Sufficient statistics
In the following, we detail the mathematical definitions of all sufficient statistics incorporated in
our model.
Propensity to invent: As already stated in Section 3.1, the standard term to incorporate in any

ERGM specification is an edge statistic that counts howmany edges are realised in the network. In
accordance with Section 3.2, we split this term into the statistics sNew(y+t ) = |y+t | =

∑
i∈I+

t

∑
k∈Kt

yt,ik
and sExperienced(y−t , . . . , yt−s) = |y−t | =

∑
i∈I−

t

∑
k∈Kt

yt,ik. Figures A1a and A1b visualise the corre-
sponding two network configurations.
Two-star statistics: Two-star statistics can be stated with regards to either set of actors in the

case of bipartite networks. The definition of the two-star statistic for the patents is shown in
Figure A1c and given by

stwostar.patent(yt) =
1
2

∑
k∈Kt

∑
i∈I t

yt,ik
∑
j≠i

yt,jk

( )
,

while the version for the inventors is visualised in Figure A1d and defined as:

stwostar.inventor(yt) =
1
2

∑
i∈I t

∑
k∈Kt

yt,ik
∑
l≠k

yt,il

( )
.
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Pairwise statistics of inventors:We include three versions of pairwise statistics of inventors intro-
duced in Section 3.2. The statistics are given by

sassort.x(yt, . . . , yt−s) =
1
2

∑
k∈Kt

∑
i∈I t

yt,ik 100 ×

∑
j≠i yt,jkxt,ij∑

j≠i yt,jk

( )
.

Note that, in general, the matrix x can be an arbitrary function of the past networks and nodal or
dyadic exogenous information. Its definition differs between the three statistics of pairwise statis-
tics of inventors:

1. Team persistence: For i, j ∈ I t and i≠ j the entries of xPt are given by

xPt,ij =
1, if

∑t−1
u=t−s

∑
k∈Ku

yu,ikyu,jk > 0
0, else

{

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A1. Network configurations for the general edge and two-star terms. Circles are inventors and squares
patents and black lines are observed edges in the network at time point t, while grey lines are edges in the past. (a)
Experienced inventors, (b) new inventors, (c) patent two-stars, (d) inventor two-stars, (e) seniority, (f) male inventors,
(g) team persistence, (h) collaborative interlocking and (i) homophily of females.
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and a graphical illustration of the statistic is provided in Figure A1g. Note that Leifeld and
Brandenberger (2019) and Metz et al. (2019) describe a closely related mechanism as reci-
procity and collaboration, respectively. One can comprehend this statistic as a particular
type of the four-cycle statistic (Wang, Pattison, et al., 2013) where one half already occurred
in the past, and the other half might occur in the present.

2. Collaboration interlocking: For i, j ∈ I t and i≠ j, the entries of xCIt are defined by

xCIt,ij =
1, if

∑t−1
u=t−s

∑
h∈I t

∑
k,l∈Ku

yu,ikyu,hkyu,jlyu,hl > 0
0, else

{
and a graphical illustration of the statistic is provided in Figure A1h. Coming back to the re-
presentation as cycle-statistics, this term is a six-cycle statistic in which four of the six edges
happened in the time frame from t− 5 to t− 1 and two in year t.

3. Spatial proximity: For i, j ∈ I t and i≠ j the entries of xSPt are defined as

xSPt,ij =
1, if dist(xcoord,i, xcoord,j) > 50 km
0, else

{
where xcoord,i and xcoord,j define the longitude and latitude of inventors i and j, respectively,
and the function dist(xcoord,i, xcoord,j) computes the distance in kilometres between them via
the haversine formula. A continuous form of this statistic based on the Euclidean distance it-
self was employed in Metz et al. (2019).

Seniority:The respective binary indicator is based on the pastpatent statistic given in (8), but in
this case we define it on the inventor level:

sseniority,i(yt, . . . , yt−s) =
∑t−1
u=t−s

∑
k∈Ku

yu,ik

We binarise this inventor-specific covariate by first computing the median of
sseniority,i(yt, . . . , yt−s) over all inventors and then using this value to split the inventors into
two groups (i.e., seniors and juniors). The resulting categorical covariate relates to the number
of patents in the past and is represented in Figure A1e.
Gender and gender homophily: The main effect of gender is depicted in Figure A1f and defined

by:

sgender(yt) =
∑
i∈I t

∑
k∈Kt

yt,ikI(xgender,i = ‘male’),

where xgender,i ∈ {‘male’, ‘female’} indicates the gender of inventor i. The homophily effect, on the
other hand, is for males defined by:

shomophily.male(yt) =
1
2

∑
k∈Kt

∑
i∈I t

yt,ik
∑
j≠i

yt,jkI(xgender,i = ‘male’)I(xgender,j = ‘male’)

( )
.

and for females the formula reads:

shomophily.female(yt) =
1
2

∑
k∈Kt

∑
i∈I t

yt,ik
∑
j≠i

yt,jkI(xgender,i = ‘female’)I(xgender,j = ‘female’)

( )
.

Figure A1i visualises the homophily statistic for females. The equivalent statistic for males can be
defined in the same manner.
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