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Motivation

Before the age of data science: small networks with dozens of
members (e.g., terrorist network behind Bali bombing in 2002):
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Age of data science: large networks with thousands or millions of
members (e.g., hate speech on Twitter (X)):
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What do we know about large networks?

I Large populations are heterogeneous.

I Some population members are closer than others.

I Large population networks are sparse.

I Connections depend on other connections, but do not
depend on all other connections.

In large populations, populations members are not aware of the
attributes and connections of most other population members and
hence cannot be directly affected by them.
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How can we study large networks?

To study large networks, we need

I scalable models

I scalable methods and software.

The bulk of the literature focuses on scalable methods and
software, while ignoring the importance of scalable models.
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The importance of scalable models

Lessons from model degeneracy and other undesirable properties of
classic models (e.g., Frank and Strauss 1986):

I Model degeneracy is rooted in a lack of structure:
Without additional structure, it is challenging to build scalable
models that are well-behaved in small and large networks.

I Additional structure is important in practice and theory, and
helps construct scalable models.

I The study of large networks requires scalable models, in
addition to scalable methods and software.

Schweinberger (Journal of the American Statistical Association,
Theory & Methods, 2011)
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Notation

Define

Xi ,j :=

1 if i and j are connected

0 otherwise

Extensions to directed and weighted networks are possible.
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Scalable models

Build scalable models that respect the fundamental features
of large networks, including but not limited to:

I Large populations are heterogeneous.

I Some population members are closer than others.

I Large population networks are sparse.

I Connections depend on subsets of other connections.
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Scalable models with local dependence

A probability law P governing connection indicators Xi ,j in-
duces local dependence if, for each pair of members {i , j},
the conditional probability of the event {Xi ,j = 1} depends
on the connections among a subset of other members:

P(Xi ,j = 1 | universe) = P(Xi ,j = 1 | subset of universe)

Scalable models with local dependence

Schweinberger and Handcock (Journal of the Royal Statistical
Society, Series B, 2015)

11 / 24



Scalable models with local dependence

The construction of models with local dependence is facilitated by
additional structure, e.g., K ≥ 2 subpopulations A1, . . . ,AK :· · ·
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I Observed: e.g., multilevel networks

I Unobserved: learned from data.
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Scalable models with local dependence

A probability law P governing connection indicators Xi ,j in a
population consisting of K ≥ 2 non-overlapping subpopula-
tions A1, . . . ,AK induces local dependence if

P(X ) =
K∏

k=1

Pk,k(XAk ,Ak
)

K∏
l=k+1

Pk,l(XAk ,Al
)

where the dependence is restricted to connections within the
same subpopulation.

Scalable models with local dependence leveraging
additional structure

The building blocks Pk,k and Pk,l can be parameterized by
generalizations of logistic regression models (ERGMs), which have
game-theoretic foundations: see Butts (2009) and Mele (2017).
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More exciting developments

More exciting developments down the road:

I Models with overlapping subpopulations (“overlapping social
circles”): Stewart and Schweinberger (Annals of Statistics,
invited revision, 2023)

I Models for studying relationships among attributes under
network interference in large populations: Fritz,
Schweinberger, Bhadra, and Hunter (forthcoming).
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Advantage: theoretical guarantees

Challenges:

I Network data are non-standard data.

I Network data are dependent data.

I It may not be possible to observe independent
replications from the same source, so that classical LLNs
and CLTs cannot be invoked to obtain theoretical guarantees.

Existing statistical theory does not guarantee that estimators of
parameters based on dependent network data are close to the truth.
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Advantage: theoretical guarantees

Local dependence facilitates some of the first theoretical
guarantees for models with complex dependence:

I Learning non-overlapping subpopulations: Schweinberger
(Bernoulli, 2020).

I Learning parameters given non-overlapping subpopulations:
Schweinberger and Stewart (Annals of Statistics, 2020).

I Learning parameters (in general): Stewart and Schweinberger
(Annals of Statistics, invited revision, 2023)

I Disclaimers: quantifying uncertainty about parameter
estimators: Stewart (Bernoulli, invited revision, 2024).

The general mathematical results in Stewart and Schweinberger
(2023) underscore the importance of additional structure for the
purpose of controlling dependence (→ local dependence).
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Advantage: scalable methods and software

Local dependence facilitates local computing on
subnetworks, which enables large-scale computing:

I Simulation

I Estimation.
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Scalable methods

If the subpopulation structure is unobserved, the model can be
estimated in two steps:

I Step 1: Estimate the subpopulation structure by taking
advantage of the fact that local dependence models are
generalizations of stochastic block models and that stochastic
block models can be estimated by scalable methods.

I Step 2: Estimate the parameters conditional on the estimated
subpopulation structure using local computing on subnetwoks.

Babkin, Stewart, Long, and Schweinberger (Computational
Statistics & Data Analysis, 2020)
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Scalable software

I R package hergm (2008–2024), created and maintained by
Schweinberger and published in Schweinberger and Luna
(Journal of Statistical Software, 2018).

I R package lighthergm based on hergm (2019–present),
developed and maintained by Sansan Inc. with the help of
Mele and Schweinberger.

I R package bigergm, which is the CRAN version of lighthergm
(2024–present), developed and maintained by Fritz with the
help of the lightergm and hergm core development teams.

All of them implement the scalable methods of Babkin,
Stewart, Long, and Schweinberger (2020), but bigergm is the
most advanced version, and it is the public version on CRAN.
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